Conducted research and developed a system under Dr Booma Poolan Marikannan on provisional analysis for obesity issues using numerous data mining techniques by using a past medical dataset from the Kaggle. Executed the project using tools such as PyCaret, Pandas, NumPy, Matplotlib, Seaborn, Scikit-Learn, and Pickle, and evaluated the classification models to classify obesity based on the value of BMI by using Classification Report and Confusion Matrix. Achievement - Implemented supervised machine learning techniques, such as Quadratic Discriminant Analysis, K-Nearest Neighbour, and Random Forest, with an accuracy of 91% to forecast customers' profitability based on consumer products.
-
Notifications
You must be signed in to change notification settings - Fork 1
Conducted research and developed a system under Dr Booma Poolan Marikannan on provisional analysis for obesity issues using numerous data mining techniques by using a past medical dataset from the Kaggle. Executed the project using tools such as PyCaret, Pandas, NumPy, Matplotlib, Seaborn, Scikit-Learn, and Pickle, and evaluated the classificat…
wahidulalamriyad/Big_Data_Analytics_For_Obesity
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
Conducted research and developed a system under Dr Booma Poolan Marikannan on provisional analysis for obesity issues using numerous data mining techniques by using a past medical dataset from the Kaggle. Executed the project using tools such as PyCaret, Pandas, NumPy, Matplotlib, Seaborn, Scikit-Learn, and Pickle, and evaluated the classificat…
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published