Skip to content

An attention-based CNN-LSTM model that generates and explains Chest X-ray diagnostics using Natural Language

License

Notifications You must be signed in to change notification settings

wisdal/diagnose-and-explain

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

90 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Diagnose and Explain

This repository contains code for the paper: "Diagnose and Explain: Medical Report Generation with Natural Language Explanations"

Our model takes a single Chest X-ray image as input and generates a complete radiology report using Natural Langugage. The generated report contains 2 sections:

  • Findings: (the explanation) observations regarding each part of the chest examined. Generally a paragraph with 4+ sentences.
  • Impression: generally a one-sentence diagnostic based on findings reported. Can contain multiple sentences.

Samples

These are few samples of our model performance on unseen records.

Ground truth:


Findings: the cardiomediastinal silhouette is within normal limits for size and contour. The lungs are normally inflated without evidence of focal airspace disease, pleural effusion or pneumothorax. Stable calcified granuloma within the right upper lung. No acute bone abnormality.

Impression: no acute cardiopulmonary process.


Model output:


Findings: heart size and mediastinal contours appear within normal limits. No focal airspace disease. No pleural effusion or pneumothorax is seen.

Impression: no acute osseus abnormality.


Visual Attention Plot














Ground truth:


Findings: no finding.

Impression: heart size is upper normal. No edema bandlike left base and lingular opacities. No scarring or atelectasis. No lobar consolidation pleural effusion or pneumothorax.


Model output:


Findings: the heart is normal in size and contour. The lungs are clear bilaterally. Again, no evidence of focal airspace consolidation. No pleural effusion or pneumothorax.

Impression: no acute overt abnormality.


Visual Attention Plot















Dataset

We trained our model on the Indiana University Chest X-Ray collection. The dataset comes with 3955 chest radiology reports from various hospital systems and 7470 associated chest x-rays (most reports are associated with 2 or more images representing frontal and lateral views).

Model architecture

Our model uses a CNN-LSTM to generate words. Features extracted from a CNN model are encoded and used by an hierarchical RNN to generate paragraphs sentence by sentence. We use an attention mechanism at many levels of the decoding stage to extract visual and semantic features. These are used to guide the word decoder and provide additional context to the language model.

Training on Cloud TPU

  • Head over to TensorFlow's quickstart on setting up a TPU instance to get started with running models on Cloud TPU.
  • Clone this repository and cd into directory
      git clone https://github.com/wisdal/diagnose-and-explain && cd diagnose-and-explain
    
  • Start training
      export STORAGE_BUCKET=<Your Storage Bucket>
      python main.py --tpu=$TPU_NAME --model_dir=${STORAGE_BUCKET}/tpu --train_steps=20 --iterations_per_loop=100 --batch_size=512
    

Acknowledgements

These experiments were possible thanks to the TensorFlow Research Cloud Program which offererd TPUs to train and run this model at scale.

Parts of the model code was inspired by this TensorFlow tutorial

About

An attention-based CNN-LSTM model that generates and explains Chest X-ray diagnostics using Natural Language

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages