A Ruby client for Druid. Includes a Squeel-like query DSL and generates a JSON query that can be sent to Druid directly.
Add this line to your application's Gemfile:
gem 'ruby-druid'
And then execute:
bundle
Or install it yourself as:
gem install ruby-druid
A query can be constructed and sent like so:
data_source = Druid::Client.new('zk1:2181,zk2:2181/druid').data_source('service/source')
query = Druid::Query::Builder.new.long_sum(:aggregate1).last(1.day).granularity(:all)
result = data_source.post(query)
The post
method on the DataSource
returns the parsed response from the Druid server as an array.
If you don't want to use ZooKeeper for broker discovery, you can explicitly construct a DataSource
:
data_source = Druid::DataSource.new('service/source', 'http://localhost:8080/druid/v2')
A GroupByQuery sets the dimensions to group the data.
queryType
is set automatically to groupBy
.
Druid::Query::Builder.new.group_by([:dimension1, :dimension2])
A TimeSeriesQuery returns an array of JSON objects where each object represents a value asked for by the timeseries query.
Druid::Query::Builder.new.time_series([:aggregate1, :aggregate2])
Druid::Query::Builder.new.long_sum([:aggregate1, :aggregate2])
In the same way could be used the following methods for aggregations adding: float_sum, double_sum, count, min, max, hyper_unique
Druid::Query::Builder.new.cardinality(:aggregate, [:dimension1, dimension2], <by_row: true | false>)
For example calculation for sum(log(x)/y) + 10
:
Druid::Query::Builder.new.js_aggregation(:aggregate, [:x, :y],
aggregate: "function(current, a, b) { return current + (Math.log(a) * b); }",
combine: "function(partialA, partialB) { return partialA + partialB; }",
reset: "function() { return 10; }"
)
A filtered aggregator wraps any given aggregator, but only aggregates the values for which the given dimension filter matches.
Druid::Query::Builder.new.filtered_aggregation(:aggregate1, :aggregate_1_name, :longSum) do
dimension1.neq 1 & dimension2.neq 2
end
A simple syntax for post aggregations with +,-,/,* can be used like:
query = Druid::Query::Builder.new.long_sum([:aggregate1, :aggregate2])
query.postagg { (aggregate2 + aggregate2).as output_field_name }
Required fields for the postaggregation are fetched automatically by the library.
Javascript post aggregations are also supported:
query.postagg { js('function(aggregate1, aggregate2) { return aggregate1 + aggregate2; }').as result }
A theta sketch object can be thought of as a Set data structure.
query.theta_sketch('user_id_sketch', 'B_unique_users')
DataSketches aggregators are useful combined with filtered aggregations.
query.filtered_aggregation(:user_id_sketch, :A_unique_users, :thetaSketch) do
product.eq('A')
end
query.filtered_aggregation(:user_id_sketch, :B_unique_users, :thetaSketch) do
product.eq('B')
end
And then used by a post aggregations to calculate INTERSECTION
or UNION
.
query.theta_sketch_postagg(
'final_unique_users',
'INTERSECT',
%w[A_unique_users B_unique_users]
)
The interval for the query takes a string with date and time or objects that provide an iso8601
method.
query = Druid::Query::Builder.new.long_sum(:aggregate1)
query.interval("2013-01-01T00", Time.now)
The granularity can be :all
, :none
, :minute
, :fifteen_minute
, :thirthy_minute
, :hour
or :day
.
It can also be a period granularity as described in the Druid documentation.
The period 'day'
or :day
will be interpreted as 'P1D'
.
If a period granularity is specifed, the (optional) second parameter is a time zone. It defaults to the machines local time zone. i.e.
query = Druid::Query::Builder.new.long_sum(:aggregate1)
query.granularity(:day)
is (on my box) the same as
query = Druid::Query::Builder.new.long_sum(:aggregate1)
query.granularity('P1D', 'Europe/Berlin')
# equality
Druid::Query::Builder.new.having { metric == 10 }
# inequality
Druid::Query::Builder.new.having { metric != 10 }
# greater, less
Druid::Query::Builder.new.having { metric > 10 }
Druid::Query::Builder.new.having { metric < 10 }
Having filters can be combined with boolean logic.
# and
Druid::Query::Builder.new.having { (metric != 1) & (metric2 != 2) }
# or
Druid::Query::Builder.new.having { (metric == 1) | (metric2 == 2) }
# not
Druid::Query::Builder.new.having{ !metric.eq(1) }
Filters are set by the filter
method. It takes a block or a hash as parameter.
Filters can be chained filter{...}.filter{...}
# equality
Druid::Query::Builder.new.filter{dimension.eq 1}
Druid::Query::Builder.new.filter{dimension == 1}
# inequality
Druid::Query::Builder.new.filter{dimension.neq 1}
Druid::Query::Builder.new.filter{dimension != 1}
# greater, less
Druid::Query::Builder.new.filter{dimension > 1}
Druid::Query::Builder.new.filter{dimension >= 1}
Druid::Query::Builder.new.filter{dimension < 1}
Druid::Query::Builder.new.filter{dimension <= 1}
# JavaScript
Druid::Query::Builder.new.filter{a.javascript('dimension >= 1 && dimension < 5')}
Filters can be combined with boolean logic.
# and
Druid::Query::Builder.new.filter{dimension.neq 1 & dimension2.neq 2}
# or
Druid::Query::Builder.new.filter{dimension.neq 1 | dimension2.neq 2}
# not
Druid::Query::Builder.new.filter{!dimension.eq(1)}
This filter creates a set of equals filters in an or filter.
Druid::Query::Builder.new.filter{dimension.in(1,2,3)}
These filters have to be combined with time_series and do only work when coordinates is a spatial dimension GeographicQueries
Druid::Query::Builder.new.time_series().long_sum([:aggregate1]).filter{coordinates.in_rec [[50.0,13.0],[54.0,15.0]]}
Druid::Query::Builder.new.time_series().long_sum([:aggregate1]).filter{coordinates.in_circ [[53.0,13.0], 5.0]}
This filter creates a set of not-equals fitlers in an and filter.
Druid::Query::Builder.new.filter{dimension.nin(1,2,3)}
Sometimes it can be useful to use a hash syntax for filtering for example if you already get them from a list or parameter hash.
Druid::Query::Builder.new.filter{dimension => 1, dimension1 =>2, dimension2 => 3}
# which is equivalent to
Druid::Query::Builder.new.filter{dimension.eq(1) & dimension1.eq(2) & dimension2.eq(3)}
- Fork it
- Create your feature branch (
git checkout -b my-new-feature
) - Commit your changes (
git commit -am 'Add some feature'
) - Push to the branch (
git push origin my-new-feature
) - Create new Pull Request