Skip to content

wizzie-io/ruby-druid

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ruby-druid

A Ruby client for Druid. Includes a Squeel-like query DSL and generates a JSON query that can be sent to Druid directly.

Gem Version Build Status Code Climate Dependency Status

Installation

Add this line to your application's Gemfile:

gem 'ruby-druid'

And then execute:

bundle

Or install it yourself as:

gem install ruby-druid

Usage

A query can be constructed and sent like so:

data_source = Druid::Client.new('zk1:2181,zk2:2181/druid').data_source('service/source')
query = Druid::Query::Builder.new.long_sum(:aggregate1).last(1.day).granularity(:all)
result = data_source.post(query)

The post method on the DataSource returns the parsed response from the Druid server as an array.

If you don't want to use ZooKeeper for broker discovery, you can explicitly construct a DataSource:

data_source = Druid::DataSource.new('service/source', 'http://localhost:8080/druid/v2')

GroupBy

A GroupByQuery sets the dimensions to group the data.

queryType is set automatically to groupBy.

Druid::Query::Builder.new.group_by([:dimension1, :dimension2])

TimeSeries

A TimeSeriesQuery returns an array of JSON objects where each object represents a value asked for by the timeseries query.

Druid::Query::Builder.new.time_series([:aggregate1, :aggregate2])

Aggregations

longSum, doubleSum, count, min, max, hyperUnique

Druid::Query::Builder.new.long_sum([:aggregate1, :aggregate2])

In the same way could be used the following methods for aggregations adding: float_sum, double_sum, count, min, max, hyper_unique

cardinality

Druid::Query::Builder.new.cardinality(:aggregate, [:dimension1, dimension2], <by_row: true | false>)

javascript

For example calculation for sum(log(x)/y) + 10:

Druid::Query::Builder.new.js_aggregation(:aggregate, [:x, :y],
  aggregate: "function(current, a, b)      { return current + (Math.log(a) * b); }",
  combine:   "function(partialA, partialB) { return partialA + partialB; }",
  reset:     "function()                   { return 10; }"
)

filtered aggregation

A filtered aggregator wraps any given aggregator, but only aggregates the values for which the given dimension filter matches.

Druid::Query::Builder.new.filtered_aggregation(:aggregate1, :aggregate_1_name, :longSum) do
  dimension1.neq 1 & dimension2.neq 2
end

Post Aggregations

A simple syntax for post aggregations with +,-,/,* can be used like:

query = Druid::Query::Builder.new.long_sum([:aggregate1, :aggregate2])
query.postagg { (aggregate2 + aggregate2).as output_field_name }

Required fields for the postaggregation are fetched automatically by the library.

Javascript post aggregations are also supported:

query.postagg { js('function(aggregate1, aggregate2) { return aggregate1 + aggregate2; }').as result }

thetaSketch

A theta sketch object can be thought of as a Set data structure.

query.theta_sketch('user_id_sketch', 'B_unique_users')

DataSketches aggregators are useful combined with filtered aggregations.

query.filtered_aggregation(:user_id_sketch, :A_unique_users, :thetaSketch) do
  product.eq('A')
end

query.filtered_aggregation(:user_id_sketch, :B_unique_users, :thetaSketch) do
  product.eq('B')
end

And then used by a post aggregations to calculate INTERSECTION or UNION.

query.theta_sketch_postagg(
  'final_unique_users',
  'INTERSECT',
  %w[A_unique_users B_unique_users]
)

Query Interval

The interval for the query takes a string with date and time or objects that provide an iso8601 method.

query = Druid::Query::Builder.new.long_sum(:aggregate1)
query.interval("2013-01-01T00", Time.now)

Result Granularity

The granularity can be :all, :none, :minute, :fifteen_minute, :thirthy_minute, :hour or :day.

It can also be a period granularity as described in the Druid documentation.

The period 'day' or :day will be interpreted as 'P1D'.

If a period granularity is specifed, the (optional) second parameter is a time zone. It defaults to the machines local time zone. i.e.

query = Druid::Query::Builder.new.long_sum(:aggregate1)
query.granularity(:day)

is (on my box) the same as

query = Druid::Query::Builder.new.long_sum(:aggregate1)
query.granularity('P1D', 'Europe/Berlin')

Having filters

# equality
Druid::Query::Builder.new.having { metric == 10 }
# inequality
Druid::Query::Builder.new.having { metric != 10 }
# greater, less
Druid::Query::Builder.new.having { metric > 10 }
Druid::Query::Builder.new.having { metric < 10 }

Compound having filters

Having filters can be combined with boolean logic.

# and
Druid::Query::Builder.new.having { (metric != 1) & (metric2 != 2) }
# or
Druid::Query::Builder.new.having { (metric == 1) | (metric2 == 2) }
# not
Druid::Query::Builder.new.having{ !metric.eq(1) }

Filters

Filters are set by the filter method. It takes a block or a hash as parameter.

Filters can be chained filter{...}.filter{...}

Base Filters

# equality
Druid::Query::Builder.new.filter{dimension.eq 1}
Druid::Query::Builder.new.filter{dimension == 1}
# inequality
Druid::Query::Builder.new.filter{dimension.neq 1}
Druid::Query::Builder.new.filter{dimension != 1}
# greater, less
Druid::Query::Builder.new.filter{dimension > 1}
Druid::Query::Builder.new.filter{dimension >= 1}
Druid::Query::Builder.new.filter{dimension < 1}
Druid::Query::Builder.new.filter{dimension <= 1}
# JavaScript
Druid::Query::Builder.new.filter{a.javascript('dimension >= 1 && dimension < 5')}

Compound Filters

Filters can be combined with boolean logic.

# and
Druid::Query::Builder.new.filter{dimension.neq 1 & dimension2.neq 2}
# or
Druid::Query::Builder.new.filter{dimension.neq 1 | dimension2.neq 2}
# not
Druid::Query::Builder.new.filter{!dimension.eq(1)}

Inclusion Filter

This filter creates a set of equals filters in an or filter.

Druid::Query::Builder.new.filter{dimension.in(1,2,3)}

Geographic filter

These filters have to be combined with time_series and do only work when coordinates is a spatial dimension GeographicQueries

Druid::Query::Builder.new.time_series().long_sum([:aggregate1]).filter{coordinates.in_rec [[50.0,13.0],[54.0,15.0]]}
Druid::Query::Builder.new.time_series().long_sum([:aggregate1]).filter{coordinates.in_circ [[53.0,13.0], 5.0]}

Exclusion Filter

This filter creates a set of not-equals fitlers in an and filter.

Druid::Query::Builder.new.filter{dimension.nin(1,2,3)}

Hash syntax

Sometimes it can be useful to use a hash syntax for filtering for example if you already get them from a list or parameter hash.

Druid::Query::Builder.new.filter{dimension => 1, dimension1 =>2, dimension2 => 3}
# which is equivalent to
Druid::Query::Builder.new.filter{dimension.eq(1) & dimension1.eq(2) & dimension2.eq(3)}

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Packages

No packages published

Languages

  • Ruby 100.0%