In this project, we proposed a better robust classification models to out-of-distribution shifts in the data called OOD-CV. In the dataset, there are 10 object categories (aeroplane, bus, car, train, boat, bicycle, motorplane, chair, dining table, sofa) from the PASCAL VOC 2012 and ImageNet datasets.
Deep learning models are usually developed and tested under the implicit assumption that the training and test data are drawn independently and identically distributed (IID) from the same distribution. Overlooking out-of-distribution (OOD) images can result in poor performance in unseen or adverse viewing conditions, which is common in real-world scenarios.
This competition aims to tackle typical computer vision tasks (i.e. Multi-class Classification, Object Detection, ...) on OOD images which follows a different distribution than the training images.
If you want to see more details of the challenge, please check the official challenge website (Link).
-
Create the virtual environment.
conda create -n ood-cv-cls python=3.8 -y conda activate ood-cv
-
Install packages.
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -y pip -r install requirements.txt pre-commit autoupdate pre-commit install
-
Copy files related SwinTransformer V2 model.
cp models/swinv2/* ~/anaconda3/env/ood-cv-cls/lib/python3.8/site-packages/torchvision/models
-
Download datasets.
cd ~/data # phase-1 gdown 1bdBmI3_ZwDuIIipHq8xI5ZpYRhsWMQka unzip ROBINv1.1-cls-pose.zip mv ROBINv1.1-cls-pose ood-cv-cls cd ood-cv-cls mkdir val cp -r nuisances/*/Images val/ cd ../ gdown 1xOxlrTjQb4V2uZFrp1LUdJniUI_ut_gB # phase-2 unzip OOD-CV-phase2.zip -d ood-cv-phase2
python trainer.py --data $DATA_DIR \
--model swin_v2_b --num_classes $NUM_CLASSES \
--batch $BATCH_SIZE --epoch $EPOCH \
--warmup_epochs $WARMUP_EPOCHS \
--lr $LEARNING_RATE \
--weight_decay $WEIGHT_DECAY \
--exp_name $EXP_NAME \
--seed $SEED
python predict.py --data $DATA_DIR \
--batch $BATCH_SIZE \
--ckpt $WEIGHT_PATH \
--exp_name $EXP_NAME \
--test_data $TEST_TYPE
bash predict.sh $DATA_DIR
$BATCH_SIZE \
$WEIGHT_PATH \
$EXP_NAME \
$OUTZIP_FNAME
- Hyunwook Kim
- Sungmin Park