Skip to content
/ SPFNet Public
forked from yanzq95/SPFNet

Scene Prior Filtering for Depth Map Super-Resolution

License

Notifications You must be signed in to change notification settings

wzx0826/SPFNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Scene Prior Filtering for Depth Map Super-Resolution

Zhengxue Wang1†, Zhiqiang Yan1†‡ , Ming-Hsuan Yang2, Jinshan Pan1, Ying Tai3, Guangwei Gao4, Jian Yang1‡

equal contribution    corresponding author   
1Nanjing University of Science and Technology    2University of California at Merced   
3Nanjing University    4Nanjing University of Posts and Telecommunications   

[Paper] [Project Page]

model

SPFNet. It first produces the normal $\boldsymbol I_{n}$ and semantic $\boldsymbol I_{s}$ priors from $\boldsymbol I_{r}$ using large-scale models. Then, the scene prior branch (orange part) extracts the multi-modal features. Meanwhile, the depth branch (blue part) recursively conducts all-in-one prior propagation (APP) and one-to-one prior embedding (OPE). BI: bicubic interpolation.

model

Scheme of (a) All-in-one Prior Propagation (APP), and (b) histogram comparison of scene prior features before and after APP.

model

Scheme of (a) One-to-one Prior Embedding (OPE), and (b) gradient histogram of filter kernels in the texture area (green box).

Dependencies

Python==3.11.5
PyTorch==2.1.0
numpy==1.23.5 
torchvision==0.16.0
scipy==1.11.3
Pillow==10.0.1
tqdm==4.65.0
scikit-image==0.21.0

Datasets

All Datasets can be found here.

Models

All pretrained models can be found here.

Training

SPFNet

Train on synthetic NYU-v2
# x4 DSR
> python train.py --scale 4 --num_feats 42
# x8 DSR
> python train.py --scale 8 --num_feats 42
# x16 DSR
> python train.py --scale 16 --num_feats 42
Train on real-world RGB-D-D
> python train.py --scale 4 --num_feats 20 

SPFNet-T

Train on synthetic NYU-v2
# x4 DSR
> python train.py --scale 4 --num_feats 6 --tiny_model
# x8 DSR
> python train.py --scale 8 --num_feats 6 --tiny_model
# x16 DSR
> python train.py --scale 16 --num_feats 6 --tiny_model
Train on real-world RGB-D-D
> python train.py --scale 4 --num_feats 6 --tiny_model

Testing

SPFNet

## Test on synthetic datasets
### x4 DSR
> python test.py --scale 4 --num_feats 42
### x8 DSR
> python test.py --scale 8 --num_feats 42
### x16 DSR
> python test.py --scale 16 --num_feats 42
## Test on real-world RGB-D-D
> python test.py --scale 4 --num_feats 20 --downsample real

SPFNet-T

## Test on synthetic datasets
### x4 DSR
> python test.py --scale 4 --num_feats 6 --tiny_model
### x8 DSR
> python test.py --scale 8 --num_feats 6 --tiny_model
### x16 DSR
> python test.py --scale 16 --num_feats 6 --tiny_model
## Test on real-world RGB-D-D
> python test.py --scale 4 --num_feats 6 --downsample real --tiny_model

Experiments

Quantitative comparison

Visual comparison

Train & test on real-world RGB-D-D:

Train & test on synthetic NYU-v2 (x16):

Acknowledgements

We thank Xinni Jiang for her invaluable assistance.

We thank these repos sharing their codes: DKN and SUFT.

Citation

@article{wang2024scene,
  title={Scene Prior Filtering for Depth Map Super-Resolution},
  author={Wang, Zhengxue and Yan, Zhiqiang and Yang, Ming-Hsuan and Pan, Jinshan and Yang, Jian and Tai, Ying and Gao, Guangwei},
  journal={arXiv preprint arXiv:2402.13876},
  year={2024}
}

About

Scene Prior Filtering for Depth Map Super-Resolution

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%