Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
201 changes: 201 additions & 0 deletions xrspatial/tests/test_zonal.py
Original file line number Diff line number Diff line change
Expand Up @@ -619,6 +619,169 @@ def test_zonal_stats_inputs_unmodified(backend, data_zones, data_values_2d, resu
assert_input_data_unmodified(data_values_2d, copied_data_values_2d)


@pytest.mark.filterwarnings("ignore:All-NaN slice encountered:RuntimeWarning")
@pytest.mark.filterwarnings("ignore:invalid value encountered in divide:RuntimeWarning")
@pytest.mark.parametrize("backend", ['numpy', 'dask+numpy'])
def test_stats_3d_timeseries_via_dataset(backend):
"""Convert a 3D time-series DataArray to a Dataset and verify per-timestep stats."""
if 'dask' in backend and not dask_array_available():
pytest.skip("Requires Dask")

zones_data = np.array([[0, 0, 1, 1, 2, 2, 3, 3],
[0, 0, 1, 1, 2, 2, 3, 3],
[0, 0, 1, 1, 2, np.nan, 3, 3]])
values_data = np.asarray([
[0, 0, 1, 1, 2, 2, 3, np.inf],
[0, 0, 1, 1, 2, np.nan, 3, 0],
[np.inf, 0, 1, 1, 2, 2, 3, 3]
])

# Stack original (t0) and doubled (t1) into a 3D DataArray
values_3d = xr.DataArray(
np.stack([values_data, values_data * 2], axis=0),
dims=['time', 'y', 'x'],
coords={'time': ['t0', 't1']},
)

if 'dask' in backend:
zones = xr.DataArray(da.from_array(zones_data, chunks=(3, 4)), dims=['y', 'x'])
values_3d = values_3d.chunk({'y': 3, 'x': 4})
else:
zones = xr.DataArray(zones_data, dims=['y', 'x'])

ds = values_3d.to_dataset(dim='time')
df_result = stats(zones=zones, values=ds)

if 'dask' in backend:
# dask doesn't support majority stat
expected = {
'zone': [0, 1, 2, 3],
't0_mean': [0, 1, 2, 2.4],
't0_max': [0, 1, 2, 3],
't0_min': [0, 1, 2, 0],
't0_sum': [0, 6, 8, 12],
't0_std': [0, 0, 0, 1.2],
't0_var': [0, 0, 0, 1.44],
't0_count': [5, 6, 4, 5],
't1_mean': [0, 2, 4, 4.8],
't1_max': [0, 2, 4, 6],
't1_min': [0, 2, 4, 0],
't1_sum': [0, 12, 16, 24],
't1_std': [0, 0, 0, 2.4],
't1_var': [0, 0, 0, 5.76],
't1_count': [5, 6, 4, 5],
}
else:
expected = {
'zone': [0, 1, 2, 3],
't0_mean': [0, 1, 2, 2.4],
't0_max': [0, 1, 2, 3],
't0_min': [0, 1, 2, 0],
't0_sum': [0, 6, 8, 12],
't0_std': [0, 0, 0, 1.2],
't0_var': [0, 0, 0, 1.44],
't0_count': [5, 6, 4, 5],
't0_majority': [0, 1, 2, 3],
't1_mean': [0, 2, 4, 4.8],
't1_max': [0, 2, 4, 6],
't1_min': [0, 2, 4, 0],
't1_sum': [0, 12, 16, 24],
't1_std': [0, 0, 0, 2.4],
't1_var': [0, 0, 0, 5.76],
't1_count': [5, 6, 4, 5],
't1_majority': [0, 2, 4, 6],
}

check_results(backend, df_result, expected)


@pytest.mark.filterwarnings("ignore:All-NaN slice encountered:RuntimeWarning")
@pytest.mark.filterwarnings("ignore:invalid value encountered in divide:RuntimeWarning")
@pytest.mark.parametrize("backend", ['numpy'])
def test_stats_3d_timeseries_via_dataset_zone_ids(backend):
"""Zone filtering works with Dataset from 3D time-series DataArray."""
zones_data = np.array([[0, 0, 1, 1, 2, 2, 3, 3],
[0, 0, 1, 1, 2, 2, 3, 3],
[0, 0, 1, 1, 2, np.nan, 3, 3]])
values_data = np.asarray([
[0, 0, 1, 1, 2, 2, 3, np.inf],
[0, 0, 1, 1, 2, np.nan, 3, 0],
[np.inf, 0, 1, 1, 2, 2, 3, 3]
])

values_3d = xr.DataArray(
np.stack([values_data, values_data * 2], axis=0),
dims=['time', 'y', 'x'],
coords={'time': ['t0', 't1']},
)
zones = xr.DataArray(zones_data, dims=['y', 'x'])
ds = values_3d.to_dataset(dim='time')

df_result = stats(zones=zones, values=ds, zone_ids=[0, 3])

expected = {
'zone': [0, 3],
't0_mean': [0, 2.4],
't0_max': [0, 3],
't0_min': [0, 0],
't0_sum': [0, 12],
't0_std': [0, 1.2],
't0_var': [0, 1.44],
't0_count': [5, 5],
't0_majority': [0, 3],
't1_mean': [0, 4.8],
't1_max': [0, 6],
't1_min': [0, 0],
't1_sum': [0, 24],
't1_std': [0, 2.4],
't1_var': [0, 5.76],
't1_count': [5, 5],
't1_majority': [0, 6],
}

check_results(backend, df_result, expected)


@pytest.mark.parametrize("backend", ['numpy'])
def test_stats_3d_timeseries_via_dataset_custom_stats(backend):
"""Custom stats_funcs work with Dataset from 3D time-series DataArray."""
zones_data = np.array([[0, 0, 1, 1, 2, 2, 3, 3],
[0, 0, 1, 1, 2, 2, 3, 3],
[0, 0, 1, 1, 2, np.nan, 3, 3]])
values_data = np.asarray([
[0, 0, 1, 1, 2, 2, 3, np.inf],
[0, 0, 1, 1, 2, np.nan, 3, 0],
[np.inf, 0, 1, 1, 2, 2, 3, 3]
])

values_3d = xr.DataArray(
np.stack([values_data, values_data * 2], axis=0),
dims=['time', 'y', 'x'],
coords={'time': ['t0', 't1']},
)
zones = xr.DataArray(zones_data, dims=['y', 'x'])
ds = values_3d.to_dataset(dim='time')

custom_stats = {
'double_sum': _double_sum,
'range': _range,
}
df_result = stats(
zones=zones, values=ds, stats_funcs=custom_stats,
zone_ids=[1, 2], nodata_values=0,
)

expected = {
'zone': [1, 2],
't0_double_sum': [12, 16],
't0_range': [0, 0],
't1_double_sum': [24, 32],
't1_range': [0, 0],
}

check_results(backend, df_result, expected)


@pytest.mark.parametrize("backend", ['numpy', 'dask+numpy'])
def test_count_crosstab_2d(backend, data_zones, data_values_2d, result_count_crosstab_2d):
# copy input data to verify they're unchanged after running the function
Expand Down Expand Up @@ -999,6 +1162,44 @@ def test_crop():
assert compare.all()


@pytest.mark.skipif(not dask_array_available(), reason="Requires Dask")
def test_dask_zonal_stats_no_concat_warnings():
"""Regression test for #774: dd.concat should not warn about unknown divisions."""
import warnings

zones_data = np.array([[0, 0, 1, 1],
[0, 0, 1, 1],
[2, 2, 3, 3]])
values_data = np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]], dtype=float)

zones = xr.DataArray(da.from_array(zones_data, chunks=(3, 2)), dims=['y', 'x'])
values = xr.DataArray(da.from_array(values_data, chunks=(3, 2)), dims=['y', 'x'])

with warnings.catch_warnings(record=True) as caught:
warnings.simplefilter("always")

# all zones (exercises column-wise concat, line 262)
result_all = stats(zones=zones, values=values)
assert isinstance(result_all, dd.DataFrame)
result_all.compute()

# filtered zone_ids (exercises row-wise concat, line 275)
result_filtered = stats(zones=zones, values=values, zone_ids=[0, 3])
assert isinstance(result_filtered, dd.DataFrame)
result_filtered.compute()

division_warnings = [
w for w in caught
if "unknown divisions" in str(w.message).lower()
]
assert division_warnings == [], (
f"Expected no 'unknown divisions' warnings, got: "
f"{[str(w.message) for w in division_warnings]}"
)


def test_crop_nothing_to_crop():
arr = np.array([[0, 4, 0, 3],
[0, 4, 4, 3],
Expand Down
20 changes: 18 additions & 2 deletions xrspatial/zonal.py
Original file line number Diff line number Diff line change
Expand Up @@ -259,7 +259,7 @@ def _stats_dask_numpy(
)

# generate dask dataframe
stats_df = dd.concat([dd.from_dask_array(s) for s in stats_dict.values()], axis=1)
stats_df = dd.concat([dd.from_dask_array(s) for s in stats_dict.values()], axis=1, ignore_unknown_divisions=True)
# name columns
stats_df.columns = stats_dict.keys()
# select columns (only include stats that were actually computed)
Expand All @@ -272,7 +272,7 @@ def _stats_dask_numpy(
for index, row in stats_df.iterrows():
if row['zone'] in zone_ids:
selected_rows.append(stats_df.loc[index])
stats_df = dd.concat(selected_rows)
stats_df = dd.concat(selected_rows, ignore_unknown_divisions=True)

return stats_df

Expand Down Expand Up @@ -464,6 +464,8 @@ def stats(
When a Dataset is passed, stats are computed for each variable
and columns are prefixed with the variable name
(e.g. ``elevation_mean``).
For 3D time-series DataArrays, convert to a Dataset first using
``.to_dataset(dim='time')`` and pass the resulting Dataset.

zone_ids : list of ints, or floats
List of zones to be included in calculation. If no zone_ids provided,
Expand Down Expand Up @@ -571,6 +573,20 @@ def stats(
1 10 27.0 49 5 675 14.21267 202.0 25
2 20 72.0 94 50 1800 14.21267 202.0 25
3 30 77.0 99 55 1925 14.21267 202.0 25

stats() works with 3D time-series DataArrays via Dataset conversion

.. sourcecode:: python

>>> # Convert a 3D time-series DataArray to a Dataset,
>>> # then pass to stats() to get per-timestep statistics.
>>> values_3d = xr.DataArray(
... np.random.rand(2, 10, 10),
... dims=['time', 'dim_0', 'dim_1'],
... coords={'time': [2020, 2021]})
>>> ds = values_3d.to_dataset(dim='time')
>>> stats_df = stats(zones=zones, values=ds)
>>> # Columns: zone, 2020_mean, 2020_max, ..., 2021_mean, 2021_max, ...
"""

# Dataset support: run stats per variable and merge into one DataFrame
Expand Down