pbrt-v3
implementation of the paper: Procedural Physically based BRDF for
Real-Time Rendering of Glints.
Xavier Chermain (ICUBE), Basile Sauvage (ICUBE), Jean-Michel Dishler (ICUBE) and Carsten Dachsbacher (KIT).
Accepted for Pacific Graphic 2020 and for CGF special issue.
- Project page
- Paper
- Video
- OpenGL
- WebGL (thanks to Sylvain Thery for the WebGL implementation)
- Shadertoy
- Bibtex
See https://github.com/ASTex-ICube/real_time_glint_dictgenerator to know how to generate the dictionary used by the renderer.
A high level speudo code is available in the appendix of the paper.
The files are organized as follows:
src/materials/sparkling.*
: implementation of the material and the BRDFscenes
: contains three example scenestextures/dict_16_192_64_0p5_0p2.exr
: the dictionary used in the paper,suzanne_glint*.pbrt
: scenes using our glinty BRDF.
The following is the README.md
of pbrt-v3.
This repository holds the source code to the version of pbrt that is described in the third edition of Physically Based Rendering: From Theory to Implementation, by Matt Pharr, Wenzel Jakob, and Greg Humphreys. As before, the code is available under the BSD license.
The pbrt website has general information about both the Physically Based Rendering book as well as many other resources for pbrt. As of October 2018, the full text of the book is now available online, for free.
Over 8GB of example scenes are available for download. (Many are new and weren't available with previous versions of pbrt.) See the pbrt-v3 scenes page on the pbrt website for information about how to download them.
After downloading them, see the README.md.html
file in the scene
distribution for more information about the scenes and preview images.
- There is a pbrt Google Groups mailing list that can be a helpful resource.
- Please see the User's Guide for more information about how to check out and build the system as well as various additional information about working with pbrt.
- Should you find a bug in pbrt, please report it in the bug tracker.
- Please report any errors you find in the Physically Based Rendering book to authors@pbrt.org.
Note: we tend to let bug reports and book errata emails pile up for a few months for processing them in batches. Don't think we don't appreciate them. :-)
To check out pbrt together with all dependencies, be sure to use the
--recursive
flag when cloning the repository, i.e.
$ git clone --recursive https://github.com/mmp/pbrt-v3/
If you accidentally already cloned pbrt without this flag (or to update an pbrt source tree after a new submodule has been added, run the following command to also fetch the dependencies:
$ git submodule update --init --recursive
pbrt uses cmake for its build system. On Linux and OS X, cmake is available via most package management systems. To get cmake for Windows, or to build it from source, see the cmake downloads page. Once you have cmake, the next step depends on your operating system.
Create a new directory for the build, change to that directory, and run
cmake [path to pbrt-v3]
. A Makefile will be created in the current
directory. Next, run make
to build pbrt, the obj2pbrt and imgtool
utilities, and an executable that runs pbrt's unit tests. Depending on the
number of cores in your system, you will probably want to supply make with
the -j
parameter to specify the number of compilation jobs to run in
parallel (e.g. make -j8
).
By default, the makefiles that are created that will compile an optimized release build of pbrt. These builds give the highest performance when rendering, but many runtime checks are disabled in these builds and optimized builds are generally difficult to trace in a debugger.
To build a debug version of pbrt, set the CMAKE_BUILD_TYPE
flag to
Debug
when you run cmake to create build files to make a debug build. To
do so, provide cmake with the argument -DCMAKE_BUILD_TYPE=Debug
and build
pbrt using the resulting makefiles. (You may want to keep two build
directories, one for release builds and one for debug builds, so that you
don't need to switch back and forth.)
Debug versions of the system run much more slowly than release builds. Therefore, in order to avoid surprisingly slow renders when debugging support isn't desired, debug versions of pbrt print a banner message indicating that they were built for debugging at startup time.
To make an Xcode project on OS X, run cmake -G Xcode [path to pbrt-v3]
.
A PBRT-V3.xcodeproj
project file that can be opened in Xcode. Note that
the default build settings have an optimization level of "None"; you'll
almost certainly want to choose "Faster" or "Fastest".
On Windows, first point the cmake GUI at the directory with pbrt's source code. Create a separate directory to hold the result of the build (potentially just a directory named "build" inside the pbrt-v3 directory) and set that for "Where to build the binaries" in the GUI.
Next, click "Configure". Note that you will want to choose the "Win64" generator for your MSVC installation unless you have a clear reason to need a 32-bit build of pbrt. Once cmake has finished the configuration step, click "Generate"; when that's done, there will be a "PBRT-V3.sln" file in the build directory you specified. Open that up in MSVC and you're ready to go.
There are two configuration settings that must be set when configuring the
build. The first controls whether pbrt uses 32-bit or 64-bit values for
floating-point computation, and the second controls whether tristimulus RGB
values or sampled spectral values are used for rendering. (Both of these
aren't amenable to being chosen at runtime, but must be determined at
compile time for efficiency). The cmake configuration variables
PBRT_FLOAT_AS_DOUBLE
and PBRT_SAMPLED_SPECTRUM
configure them,
respectively.
If you're using a GUI version of cmake, those settings should be available in the list of configuration variables; set them as desired before choosing 'Generate'.
With command-line cmake, their values can be specified when you cmake via
-DPBRT_FLOAT_AS_DOUBLE=1
, for example.