Our project is developed using Python 3.7 PyTorch 1.5.0 with CUDA10.2. We recommend you to use anaconda for dependency configuration.
First create an anaconda environment called DGMP
by
conda create -n DGMP python=3.7
conda activate DGMP
Then, you need to install torch manually to fit in with your server environment (e.g. CUDA version). run
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.2 -c pytorch
Besides, torch-scatter and torch-sparse are required for dealing with sparse graph. For these two packages, please follow their official instruction torch-scatter and torch-sparse.
cd DGMP
pip install torch-geometric
pip install torch-scatter
cd code
python gcn.py --gpu-no 0 --dataset cancer
python DGMP.py --gpu-no 0 --dataset cancer
python MLP.py --gpu-no 0 --dataset cancer
cpu
python gcn.py --gpu-no -1 --dataset cancer
python DGMP.py --gpu-no -1 --dataset cancer
python MLP.py --gpu-no -1 --dataset cancer
DGMP is released under the MIT License. See the LICENSE file for more details.
We thank the authors of following works for opening source their excellent codes.DiGCN