Read full docs | ❤️ Lovely Tensors | 💟 Lovely NumPy
| Discord
If something does not make sense, shoot me an Issue or ping me on Discord and let me know how it’s supposed to work!
Better support for sharded arrays and solid jit/pmap/vmap support coming soon!
pip install lovely-jax
How often do you find yourself debugging JAX code? You dump an array to the cell output, and see this:
numbers
Array([[[-0.354, -0.337, -0.405, ..., -0.56 , -0.474, 2.249],
[-0.405, -0.423, -0.491, ..., -0.919, -0.851, 2.163],
[-0.474, -0.474, -0.542, ..., -1.039, -1.039, 2.198],
...,
[-0.902, -0.834, -0.936, ..., -1.467, -1.296, 2.232],
[-0.851, -0.782, -0.936, ..., -1.604, -1.501, 2.18 ],
[-0.834, -0.816, -0.971, ..., -1.656, -1.553, 2.112]],
[[-0.197, -0.197, -0.303, ..., -0.478, -0.373, 2.411],
[-0.25 , -0.232, -0.338, ..., -0.705, -0.67 , 2.359],
[-0.303, -0.285, -0.39 , ..., -0.74 , -0.81 , 2.376],
...,
[-0.425, -0.232, -0.373, ..., -1.09 , -1.02 , 2.429],
[-0.39 , -0.232, -0.425, ..., -1.23 , -1.23 , 2.411],
[-0.408, -0.285, -0.478, ..., -1.283, -1.283, 2.341]],
[[-0.672, -0.985, -0.881, ..., -0.968, -0.689, 2.396],
[-0.724, -1.072, -0.968, ..., -1.247, -1.02 , 2.326],
[-0.828, -1.125, -1.02 , ..., -1.264, -1.16 , 2.379],
...,
[-1.229, -1.473, -1.386, ..., -1.508, -1.264, 2.518],
[-1.194, -1.456, -1.421, ..., -1.648, -1.473, 2.431],
[-1.229, -1.526, -1.508, ..., -1.682, -1.526, 2.361]]], dtype=float32)
Was it really useful for you, as a human, to see all these numbers?
What is the shape? The size?
What are the statistics?
Are any of the values nan
or inf
?
Is it an image of a man holding a tench?
import lovely_jax as lj
lj.monkey_patch()
numbers
Array[196, 196, 3] n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073 cpu:0
Better, huh?
numbers[1,:6,1] # Still shows values if there are not too many.
Array[6] x∈[-0.408, -0.232] μ=-0.340 σ=0.075 cpu:0 [-0.250, -0.232, -0.338, -0.408, -0.408, -0.408]
spicy = numbers.flatten()[:12].copy()
spicy = (spicy .at[0].mul(10000)
.at[1].divide(10000)
.at[2].set(float('inf'))
.at[3].set(float('-inf'))
.at[4].set(float('nan'))
.reshape((2,6)))
spicy # Spicy stuff
Array[2, 6] n=12 x∈[-3.541e+03, -1.975e-05] μ=-393.848 σ=1.113e+03 +Inf! -Inf! NaN! cpu:0
jnp.zeros((10, 10)) # A zero array - make it obvious
Array[10, 10] n=100 all_zeros cpu:0
spicy.v # Verbose
Array[2, 6] n=12 x∈[-3.541e+03, -1.975e-05] μ=-393.848 σ=1.113e+03 +Inf! -Inf! NaN! cpu:0
Array([[-3.541e+03, -1.975e-05, inf, -inf, nan, -9.853e-01],
[-4.054e-01, -3.025e-01, -8.807e-01, -4.397e-01, -3.025e-01, -7.761e-01]], dtype=float32)
spicy.p # The plain old way
Array([[-3.541e+03, -1.975e-05, inf, -inf, nan, -9.853e-01],
[-4.054e-01, -3.025e-01, -8.807e-01, -4.397e-01, -3.025e-01, -7.761e-01]], dtype=float32)
numbers.deeper
Array[196, 196, 3] n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073 cpu:0
Array[196, 3] n=588 x∈[-1.912, 2.411] μ=-0.728 σ=0.519 cpu:0
Array[196, 3] n=588 x∈[-1.861, 2.359] μ=-0.778 σ=0.450 cpu:0
Array[196, 3] n=588 x∈[-1.758, 2.379] μ=-0.838 σ=0.437 cpu:0
Array[196, 3] n=588 x∈[-1.656, 2.466] μ=-0.878 σ=0.415 cpu:0
Array[196, 3] n=588 x∈[-1.717, 2.448] μ=-0.882 σ=0.399 cpu:0
Array[196, 3] n=588 x∈[-1.717, 2.431] μ=-0.905 σ=0.408 cpu:0
Array[196, 3] n=588 x∈[-1.563, 2.448] μ=-0.859 σ=0.416 cpu:0
Array[196, 3] n=588 x∈[-1.475, 2.431] μ=-0.791 σ=0.463 cpu:0
Array[196, 3] n=588 x∈[-1.526, 2.429] μ=-0.759 σ=0.499 cpu:0
...
# You can go deeper if you need to
numbers[:3,:5,:3].deeper(2)
Array[3, 5, 3] n=45 x∈[-1.316, -0.197] μ=-0.593 σ=0.302 cpu:0
Array[5, 3] n=15 x∈[-0.985, -0.197] μ=-0.491 σ=0.267 cpu:0
Array[3] x∈[-0.672, -0.197] μ=-0.408 σ=0.197 cpu:0 [-0.354, -0.197, -0.672]
Array[3] x∈[-0.985, -0.197] μ=-0.507 σ=0.343 cpu:0 [-0.337, -0.197, -0.985]
Array[3] x∈[-0.881, -0.303] μ=-0.530 σ=0.252 cpu:0 [-0.405, -0.303, -0.881]
Array[3] x∈[-0.776, -0.303] μ=-0.506 σ=0.199 cpu:0 [-0.440, -0.303, -0.776]
Array[3] x∈[-0.916, -0.215] μ=-0.506 σ=0.298 cpu:0 [-0.388, -0.215, -0.916]
Array[5, 3] n=15 x∈[-1.212, -0.232] μ=-0.609 σ=0.302 cpu:0
Array[3] x∈[-0.724, -0.250] μ=-0.460 σ=0.197 cpu:0 [-0.405, -0.250, -0.724]
Array[3] x∈[-1.072, -0.232] μ=-0.576 σ=0.360 cpu:0 [-0.423, -0.232, -1.072]
Array[3] x∈[-0.968, -0.338] μ=-0.599 σ=0.268 cpu:0 [-0.491, -0.338, -0.968]
Array[3] x∈[-0.968, -0.408] μ=-0.651 σ=0.235 cpu:0 [-0.577, -0.408, -0.968]
Array[3] x∈[-1.212, -0.408] μ=-0.761 σ=0.336 cpu:0 [-0.662, -0.408, -1.212]
Array[5, 3] n=15 x∈[-1.316, -0.285] μ=-0.677 σ=0.306 cpu:0
Array[3] x∈[-0.828, -0.303] μ=-0.535 σ=0.219 cpu:0 [-0.474, -0.303, -0.828]
Array[3] x∈[-1.125, -0.285] μ=-0.628 σ=0.360 cpu:0 [-0.474, -0.285, -1.125]
Array[3] x∈[-1.020, -0.390] μ=-0.651 σ=0.268 cpu:0 [-0.542, -0.390, -1.020]
Array[3] x∈[-1.003, -0.478] μ=-0.708 σ=0.219 cpu:0 [-0.645, -0.478, -1.003]
Array[3] x∈[-1.316, -0.513] μ=-0.865 σ=0.336 cpu:0 [-0.765, -0.513, -1.316]
The important queston - is it our man?
numbers.rgb
Maaaaybe? Looks like someone normalized him.
in_stats = ( (0.485, 0.456, 0.406), # mean
(0.229, 0.224, 0.225) ) # std
# numbers.rgb(in_stats, cl=True) # For channel-last input format
numbers.rgb(in_stats)
It’s indeed our hero, the Tenchman!
(numbers+3).plt
(numbers+3).plt(center="mean", max_s=1000)
(numbers+3).plt(center="range")
# .chans will map values betwen [-1,1] to colors.
# Make our values fit into that range to avoid clipping.
mean = jnp.array(in_stats[0])
std = jnp.array(in_stats[1])
numbers_01 = (numbers*std + mean)
numbers_01
Array[196, 196, 3] n=115248 (0.4Mb) x∈[0., 1.000] μ=0.361 σ=0.248 cpu:0
numbers_01.chans
# Make 8 images with progressively higher brightness and stack them 2x2x2.
eight_images = (jnp.stack([numbers]*8) + jnp.linspace(-2, 2, 8)[:,None,None,None])
eight_images = (eight_images
*jnp.array(in_stats[1])
+jnp.array(in_stats[0])
).clip(0,1).reshape(2,2,2,196,196,3)
eight_images
Array[2, 2, 2, 196, 196, 3] n=921984 (3.5Mb) x∈[0., 1.000] μ=0.382 σ=0.319 cpu:0
eight_images.rgb
assert jax.__version_info__[0] == 0
if jax.__version_info__[1] >= 4:
from jax.sharding import PositionalSharding
from jax.experimental import mesh_utils
sharding = PositionalSharding(mesh_utils.create_device_mesh((4,2)))
x = jax.random.normal(jax.random.PRNGKey(0), (8192, 8192))
y = jax.device_put(x, sharding)
jax.debug.visualize_array_sharding(y)
else:
# Note: Looks like ShardedDeviceArray needs an explicit device axis?
x = jax.random.normal(jax.random.PRNGKey(0), (8, 1024, 8192))
y = jax.device_put_sharded([x for x in x], jax.devices())
print(x)
print(y)
CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7
Array[8192, 8192] n=67108864 (0.2Gb) x∈[-5.420, 5.220] μ=-0.000 σ=1.000 cpu:0
Array[8192, 8192] n=67108864 (0.2Gb) x∈[-5.420, 5.220] μ=-0.000 σ=1.000 cpu:0,1,2,3,4,5,6,7
Options | Docs
from lovely_jax import set_config, config, lovely, get_config
set_config(precision=5, sci_mode=True, color=False)
jnp.array([1., 2, jnp.nan])
Array[3] μ=1.50000e+00 σ=5.00000e-01 NaN! cpu:0 [1.00000e+00, 2.00000e+00, nan]
set_config(precision=None, sci_mode=None, color=None) # None -> Reset to defaults
print(jnp.array([1., 2]))
# Or with config context manager.
with config(sci_mode=True, precision=5):
print(jnp.array([1., 2]))
print(jnp.array([1., 2]))
Array[2] μ=1.500 σ=0.500 cpu:0 [1.000, 2.000]
Array[2] μ=1.50000e+00 σ=5.00000e-01 cpu:0 [1.00000e+00, 2.00000e+00]
Array[2] μ=1.500 σ=0.500 cpu:0 [1.000, 2.000]
lj.lovely(spicy)
Array[2, 6] n=12 x∈[-3.541e+03, -1.975e-05] μ=-393.848 σ=1.113e+03 +Inf! -Inf! NaN! cpu:0
lj.lovely(spicy, verbose=True)
Array[2, 6] n=12 x∈[-3.541e+03, -1.975e-05] μ=-393.848 σ=1.113e+03 +Inf! -Inf! NaN! cpu:0
Array([[-3.541e+03, -1.975e-05, inf, -inf, nan, -9.853e-01],
[-4.054e-01, -3.025e-01, -8.807e-01, -4.397e-01, -3.025e-01, -7.761e-01]], dtype=float32)
lj.lovely(numbers, depth=1)
Array[196, 196, 3] n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073 cpu:0
Array[196, 3] n=588 x∈[-1.912, 2.411] μ=-0.728 σ=0.519 cpu:0
Array[196, 3] n=588 x∈[-1.861, 2.359] μ=-0.778 σ=0.450 cpu:0
Array[196, 3] n=588 x∈[-1.758, 2.379] μ=-0.838 σ=0.437 cpu:0
Array[196, 3] n=588 x∈[-1.656, 2.466] μ=-0.878 σ=0.415 cpu:0
Array[196, 3] n=588 x∈[-1.717, 2.448] μ=-0.882 σ=0.399 cpu:0
Array[196, 3] n=588 x∈[-1.717, 2.431] μ=-0.905 σ=0.408 cpu:0
Array[196, 3] n=588 x∈[-1.563, 2.448] μ=-0.859 σ=0.416 cpu:0
Array[196, 3] n=588 x∈[-1.475, 2.431] μ=-0.791 σ=0.463 cpu:0
Array[196, 3] n=588 x∈[-1.526, 2.429] μ=-0.759 σ=0.499 cpu:0
...
lj.rgb(numbers, in_stats)
lj.plot(numbers, center="mean")
lj.chans(numbers_01)
Matplotlib integration | Docs
numbers.rgb(in_stats).fig # matplotlib figure
(numbers*0.3+0.5).chans.fig # matplotlib figure
numbers.plt.fig.savefig('pretty.svg') # Save it
!file pretty.svg; rm pretty.svg
pretty.svg: SVG Scalable Vector Graphics image
fig = plt.figure(figsize=(8,3))
fig.set_constrained_layout(True)
gs = fig.add_gridspec(2,2)
ax1 = fig.add_subplot(gs[0, :])
ax2 = fig.add_subplot(gs[1, 0])
ax3 = fig.add_subplot(gs[1,1:])
ax2.set_axis_off()
ax3.set_axis_off()
numbers_01.plt(ax=ax1)
numbers_01.rgb(ax=ax2)
numbers_01.chans(ax=ax3);