Skip to content

xunyoyo/DrugSolAtten

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DurgSolAtten: An Interpretable Hybrid Predictive Framework for Organic Drug Solubility Enhancement via Graph Convolutional Networks and Transformer-Attention Modules

image

Configuration of the DurgSolAtten environment

python==3.6
torch==1.7.1
scikit-learn==0.24.2
scipy==1.5.4
torch-geometric==1.7.0
einops==0.4.1
networkx==2.5.1
rdkit-pypi

Other packages can be found from requirements.txt.

Datasets

You can download the training and testing dataset from:

All datasets in the raw folders.

Useage

  • smile2topology.py: Convert .csv files to datasets.
  • model.py: The whole YZS-model.
  • opti.py: Using searching package to find the perfect parameters.
  • train.py: Training the YZS-model.
  • test.py:Tests and evaluates the YZS model.

About

authors:

  • Chenxu Wang, Shihezi University (PRC, Xinjiang)
  • Haowei Ming, Peking University (PRC, Beijing)
  • Jian He, Xinjiang University (PRC, Xinjiang)
  • Junhong Chen, {South China University of Technology, NetEase Inc.} (PRC, {Guangdong, Zhejiang})

Statement:

  • Part of code come from:
https://github.com/ziduzidu/CSDTI
https://github.com/ltorres97/FS-CrossTR
https://github.com/waqarahmadm019/AquaPred

When using the above-mentioned open-source code, we have already indicated this in the documents.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages