DurgSolAtten: An Interpretable Hybrid Predictive Framework for Organic Drug Solubility Enhancement via Graph Convolutional Networks and Transformer-Attention Modules
python==3.6
torch==1.7.1
scikit-learn==0.24.2
scipy==1.5.4
torch-geometric==1.7.0
einops==0.4.1
networkx==2.5.1
rdkit-pypi
Other packages can be found from requirements.txt
.
You can download the training and testing dataset from:
All datasets in the raw folders.
smile2topology.py
: Convert .csv files to datasets.model.py
: The whole YZS-model.opti.py
: Using searching package to find the perfect parameters.train.py
: Training the YZS-model.test.py
:Tests and evaluates the YZS model.
authors:
- Chenxu Wang, Shihezi University (PRC, Xinjiang)
- e-mail:zxsdsama@gmail.com
- Haowei Ming, Peking University (PRC, Beijing)
- Jian He, Xinjiang University (PRC, Xinjiang)
- Junhong Chen, {South China University of Technology, NetEase Inc.} (PRC, {Guangdong, Zhejiang})
Statement:
- Part of code come from:
https://github.com/ziduzidu/CSDTI
https://github.com/ltorres97/FS-CrossTR
https://github.com/waqarahmadm019/AquaPred
When using the above-mentioned open-source code, we have already indicated this in the documents.