spark-jobserver provides a RESTful interface for submitting and managing Apache Spark jobs, jars, and job contexts. This repo contains the complete Spark job server project, including unit tests and deploy scripts. It was originally started at Ooyala, but this is now the main development repo.
See Troubleshooting Tips as well as Yarn tips.
(Please add yourself to this list!)
- Ooyala
- Netflix
- Avenida.com
- GumGum
- Fuse Elements
- "Spark as a Service": Simple REST interface for all aspects of job, context management
- Support for Spark SQL and Hive Contexts/jobs and custom job contexts! See Contexts.
- Supports sub-second low-latency jobs via long-running job contexts
- Start and stop job contexts for RDD sharing and low-latency jobs; change resources on restart
- Kill running jobs via stop context
- Separate jar uploading step for faster job startup
- Asynchronous and synchronous job API. Synchronous API is great for low latency jobs!
- Works with Standalone Spark as well as Mesos and yarn-client
- Job and jar info is persisted via a pluggable DAO interface
- Named RDDs to cache and retrieve RDDs by name, improving RDD sharing and reuse among jobs.
- Supports Scala 2.10 and 2.11
Version | Spark Version |
---|---|
0.3.1 | 0.9.1 |
0.4.0 | 1.0.2 |
0.4.1 | 1.1.0 |
0.5.0 | 1.2.0 |
0.5.1 | 1.3.0 |
For release notes, look in the notes/
directory. They should also be up on ls.implicit.ly.
You need to have SBT installed.
To set the current version, do something like this:
export VER=`sbt version | tail -1 | cut -f2`
From SBT shell, simply type "reStart". This uses a default configuration file. An optional argument is a path to an alternative config file. You can also specify JVM parameters after "---". Including all the options looks like this:
reStart /path/to/my.conf --- -Xmx8g
Note that reStart (SBT Revolver) forks the job server in a separate process. If you make a code change, simply type reStart again at the SBT shell prompt, it will compile your changes and restart the jobserver. It enables very fast turnaround cycles.
For example jobs see the job-server-tests/ project / folder.
When you use reStart
, the log file goes to job-server/job-server-local.log
. There is also an environment variable
EXTRA_JAR for adding a jar to the classpath.
First, to package the test jar containing the WordCountExample: sbt job-server-tests/package
.
Then go ahead and start the job server using the instructions above.
Let's upload the jar:
curl --data-binary @job-server-tests/target/job-server-tests-$VER.jar localhost:8090/jars/test
OK⏎
The above jar is uploaded as app test
. Next, let's start an ad-hoc word count job, meaning that the job
server will create its own SparkContext, and return a job ID for subsequent querying:
curl -d "input.string = a b c a b see" 'localhost:8090/jobs?appName=test&classPath=spark.jobserver.WordCountExample'
{
"status": "STARTED",
"result": {
"jobId": "5453779a-f004-45fc-a11d-a39dae0f9bf4",
"context": "b7ea0eb5-spark.jobserver.WordCountExample"
}
}⏎
NOTE: If you want to feed in a text file config and POST using curl, you want the --data-binary
option, otherwise
curl will munge your line separator chars. Like:
curl --data-binary @my-job-config.json 'localhost:8090/jobs?appNam=...'
From this point, you could asynchronously query the status and results:
curl localhost:8090/jobs/5453779a-f004-45fc-a11d-a39dae0f9bf4
{
"status": "OK",
"result": {
"a": 2,
"b": 2,
"c": 1,
"see": 1
}
}⏎
Note that you could append &sync=true
when you POST to /jobs to get the results back in one request, but for
real clusters and most jobs this may be too slow.
You can also append &timeout=XX
to extend the request timeout for sync=true
requests.
Another way of running this job is in a pre-created context. Start a new context:
curl -d "" 'localhost:8090/contexts/test-context?num-cpu-cores=4&memory-per-node=512m'
OK⏎
You can verify that the context has been created:
curl localhost:8090/contexts
["test-context"]⏎
Now let's run the job in the context and get the results back right away:
curl -d "input.string = a b c a b see" 'localhost:8090/jobs?appName=test&classPath=spark.jobserver.WordCountExample&context=test-context&sync=true'
{
"status": "OK",
"result": {
"a": 2,
"b": 2,
"c": 1,
"see": 1
}
}⏎
Note the addition of context=
and sync=true
.
In your build.sbt
, add this to use the job server jar:
resolvers += "Job Server Bintray" at "https://dl.bintray.com/spark-jobserver/maven"
libraryDependencies += "spark.jobserver" %% "job-server-api" % "0.5.1" % "provided"
If a SQL or Hive job/context is desired, you also want to pull in job-server-extras
:
libraryDependencies += "spark.jobserver" %% "job-server-extras" % "0.5.1" % "provided"
For most use cases it's better to have the dependencies be "provided" because you don't want SBT assembly to include the whole job server jar.
To create a job that can be submitted through the job server, the job must implement the SparkJob
trait.
Your job will look like:
object SampleJob extends SparkJob {
override def runJob(sc:SparkContext, jobConfig: Config): Any = ???
override def validate(sc:SparkContext, config: Config): SparkJobValidation = ???
}
runJob
contains the implementation of the Job. The SparkContext is managed by the JobServer and will be provided to the job through this method. This releaves the developer from the boiler-plate configuration management that comes with the creation of a Spark job and allows the Job Server to manage and re-use contexts.validate
allows for an initial validation of the context and any provided configuration. If the context and configuration are OK to run the job, returningspark.jobserver.SparkJobValid
will let the job execute, otherwise returningspark.jobserver.SparkJobInvalid(reason)
prevents the job from running and provides means to convey the reason of failure. In this case, the call immediatly returns anHTTP/1.1 400 Bad Request
status code.
validate
helps you preventing running jobs that will eventually fail due to missing or wrong configuration and save both time and resources.
Let's try running our sample job with an invalid configuration:
curl -i -d "bad.input=abc" 'localhost:8090/jobs?appName=test&classPath=spark.jobserver.WordCountExample'
HTTP/1.1 400 Bad Request
Server: spray-can/1.2.0
Date: Tue, 10 Jun 2014 22:07:18 GMT
Content-Type: application/json; charset=UTF-8
Content-Length: 929
{
"status": "VALIDATION FAILED",
"result": {
"message": "No input.string config param",
"errorClass": "java.lang.Throwable",
"stack": ["spark.jobserver.JobManagerActor$$anonfun$spark$jobserver$JobManagerActor$$getJobFuture$4.apply(JobManagerActor.scala:212)",
"scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)",
"scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)",
"akka.dispatch.TaskInvocation.run(AbstractDispatcher.scala:42)",
"akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)",
"scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)",
"scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)",
"scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)",
"scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)"]
}
}
Named RDDs are a way to easily share RDDs among job. Using this facility, computed RDDs can be cached with a given name and later on retrieved.
To use this feature, the SparkJob needs to mixin NamedRddSupport
:
object SampleNamedRDDJob extends SparkJob with NamedRddSupport {
override def runJob(sc:SparkContext, jobConfig: Config): Any = ???
override def validate(sc:SparkContext, config: Config): SparkJobValidation = ???
}
Then in the implementation of the job, RDDs can be stored with a given name:
this.namedRdds.update("french_dictionary", frenchDictionaryRDD)
Other job running in the same context can retrieve and use this RDD later on:
val rdd = this.namedRdds.get[(String, String)]("french_dictionary").get
(note the explicit type provided to get. This will allow to cast the retrieved RDD that otherwise is of type RDD[_])
For jobs that depends on a named RDDs it's a good practice to check for the existence of the NamedRDD in the validate
method as explained earlier:
def validate(sc:SparkContext, config: Contig): SparkJobValidation = {
...
val rdd = this.namedRdds.get[(Long, scala.Seq[String])]("dictionary")
if (rdd.isDefined) SparkJobValid else SparkJobInvalid(s"Missing named RDD [dictionary]")
}
- Copy
config/local.sh.template
to<environment>.sh
and edit as appropriate. bin/server_deploy.sh <environment>
-- this packages the job server along with config files and pushes it to the remotes you have configured in<environment>.sh
- On the remote server, start it in the deployed directory with
server_start.sh
and stop it withserver_stop.sh
NOTE: by default the assembly jar from job-server-extras
, which includes support for SQLContext and HiveContext, is used. If you face issues with all the extra dependencies, consider modifying the install scripts to invoke sbt job-server/assembly
instead, which doesn't include the extra dependencies.
Note: to test out the deploy to a local staging dir, or package the job server for Mesos,
use bin/server_package.sh <environment>
.
The job server is intended to be run as one or more independent processes, separate from the Spark cluster (though it very well may be colocated with say the Master).
At first glance, it seems many of these functions (eg job management) could be integrated into the Spark standalone master. While this is true, we believe there are many significant reasons to keep it separate:
- We want the job server to work for Mesos and YARN as well
- Spark and Mesos masters are organized around "applications" or contexts, but the job server supports running many discrete "jobs" inside a single context
- We want it to support Shark functionality in the future
- Loose coupling allows for flexible HA arrangements (multiple job servers targeting same standalone master, or possibly multiple Spark clusters per job server)
Flow diagrams are checked in in the doc/ subdirectory. .diagram files are for websequencediagrams.com... check them out, they really will help you understand the flow of messages between actors.
GET /jars - lists all the jars and the last upload timestamp
POST /jars/<appName> - uploads a new jar under <appName>
GET /contexts - lists all current contexts
POST /contexts/<name> - creates a new context
DELETE /contexts/<name> - stops a context and all jobs running in it
Jobs submitted to the job server must implement a SparkJob
trait. It has a main runJob
method which is
passed a SparkContext and a typesafe Config object. Results returned by the method are made available through
the REST API.
GET /jobs - Lists the last N jobs
POST /jobs - Starts a new job, use ?sync=true to wait for results
GET /jobs/<jobId> - Gets the result or status of a specific job
DELETE /jobs/<jobId> - Kills the specified job
GET /jobs/<jobId>/config - Gets the job configuration
A number of context-specific settings can be controlled when creating a context (POST /contexts) or running an ad-hoc job (which creates a context on the spot). For example, add urls of dependent jars for a context.
POST '/contexts/my-new-context?dependent-jar-uris=file:///some/path/of/my-foo-lib.jar'
When creating a context via POST /contexts, the query params are used to override the default configuration in spark.context-settings. For example,
POST /contexts/my-new-context?num-cpu-cores=10
would override the default spark.context-settings.num-cpu-cores setting.
When starting a job, and the context= query param is not specified, then an ad-hoc context is created. Any settings specified in spark.context-settings will override the defaults in the job server config when it is started up.
Any spark configuration param can be overridden either in POST /contexts query params, or through spark .context-settings
job configuration. In addition, num-cpu-cores
maps to spark.cores.max
, and mem-per- node
maps to spark.executor.memory
. Therefore the following are all equivalent:
POST /contexts/my-new-context?num-cpu-cores=10
POST /contexts/my-new-context?spark.cores.max=10
or in the job config when using POST /jobs,
spark.context-settings {
spark.cores.max = 10
}
To pass settings directly to the sparkConf that do not use the "spark." prefix "as-is", use the "passthrough" section.
spark.context-settings {
spark.cores.max = 10
passthrough {
some.custom.hadoop.config = "192.168.1.1"
}
}
For the exact context configuration parameters, see JobManagerActor docs as well as application.conf.
Also see the yarn doc for more tips.
The result returned by the SparkJob
runJob
method is serialized by the job server into JSON for routes
that return the result (GET /jobs with sync=true, GET /jobs/). Currently the following types can be
serialized properly:
- String, Int, Long, Double, Float, Boolean
- Scala Map's with string key values (non-string keys may be converted to strings)
- Scala Seq's
- Array's
- Anything that implements Product (Option, case classes) -- they will be serialized as lists
- Maps and Seqs may contain nested values of any of the above
If we encounter a data type that is not supported, then the entire result will be serialized to a string.
Contributions via Github Pull Request are welcome. See the TODO for some ideas.
- If you need to build with a specific scala version use ++x.xx.x followed by the regular command,
for instance:
sbt ++2.11.6 job-server/compile
- From the "master" project, please run "test" to ensure nothing is broken.
- You may need to set
SPARK_LOCAL_IP
tolocalhost
to ensure Akka port can bind successfully
- You may need to set
- Logging for tests goes to "job-server-test.log"
- Run
scoverage:test
to check the code coverage and improve it - Please run scalastyle to ensure your code changes don't break the style guide
- Do "reStart" from SBT for quick restarts of the job server process
- Please update the g8 template if you change the SparkJob API
- Be sure you are in the master project
- Run
+test
to ensure all tests pass for all scala versions - Now just run
+publish
and package will be published to bintray
To announce the release on ls.implicit.ly, use
Herald after adding release notes in
the notes/
dir. Also regenerate the catalog with lsWriteVersion
SBT task
and lsync
, in project job-server.
TODO: Automate the above steps with sbt-release
.
For user/dev questions, we are using google group for discussions: https://groups.google.com/forum/#!forum/spark-jobserver
Please report bugs/problems to: https://github.com/spark-jobserver/spark-jobserver/issues
Apache 2.0, see LICENSE.md
Copyright(c) 2014, Ooyala, Inc.
-
Have server_start.sh use spark-submit (#155, others) - would help resolve classpath/dependency issues.
-
More debugging for classpath issues
-
Update .g8 template, consider creating Activator template for sample job
-
Add Swagger support. See the spray-swagger project.
-
Implement an interactive SQL window. See: spark-admin
-
Stream the current job progress via a Listener
-
Add routes to return stage info for a job. Persist it via DAO so that we can always retrieve stage / performance info even for historical jobs. This would be pretty kickass.