Skip to content

A well structured practical deep dive into functional programming in NumPy.

Notifications You must be signed in to change notification settings

yashuv/NumPy-for-Data-Science

Repository files navigation

NumPy-for-Data-Science 🔥

What I learnt? 👨‍💻📙🐍

  🔸Basics of NumPy              🔸Vectorization
  🔸Ndarray                      🔸Apply Functions
  🔸Data Types                   🔸Interpolation 
  🔸Import and Export Data       🔸Universal Functions (uFuncs)
  🔸Handling Missing Data        🔸Fitting Polynomials
  🔸Random Numbers               🔸Matrix Opertions for Linear Algebra 
  🔸Statistical Summaries        🔸Solving Linear Equations
  🔸Data Manipulation

To run the code in your local machine, follow some steps below:
  1. Download the root folder (Numpy for Data Science) in your machine. Set this folder as the current working directory.
  2. You can run the Jupyter Notebooks in the corresponding folder. All files are in .ipynb format beacause you can visualize the code line by line for clear understanding of concepts.
  3. It is required to have installed some python packages as mentioned in 'requirements.txt' file. Command for this: "pip install -r requirements.txt" OR You can do it one by one on your own.
  4. Open Juputer notebook and load the folder on it so that you can run code file of your choice.

To get rid of all these steps, you can run those files in the Google Colab (https://colab.research.google.com/) without having overhead.

If problems still exist, you can mail me on yashuv.baskota1@gmail.com

Thank You! HappY Coding..

About

A well structured practical deep dive into functional programming in NumPy.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published