Skip to content

yixindu1573/Caffe-Installation-Ubuntu-16.04-cuda-9.0-cudnn-v7

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 

Repository files navigation

Caffe-Installation-Ubuntu-16.04-cuda-8.0-cudnn-v6

Installing Caffe on a fresh-installed ubuntu 16.04 (please fully update ubuntu software first), with cuda 8.0 and cudnn v6.

1. Install NVIDIA driver.

  sudo add-apt-repository ppa:graphics-drivers/ppa
  sudo apt-get update  
  sudo apt-get install nvidia-390 (check the gpu drive number on NVIDIA website, and change it to fit your GPU. E.x., 390 is for Titan X)  
  sudo shutdown -r now  

2. Install CUDA 9.0.
Download cuda 9.0 from (https://developer.nvidia.com/cuda-90-download-archive) Install 9.0 for Tensorflow, 8.0 for matconvnet.

  cd ~/Downloads
  sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb 
  sudo apt-get update
  sudo apt-get install cuda
  echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc
  echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc

compile cuda samples, open a new terminal:

  cuda-install-samples-8.0.sh ~/cuda-samples
  cd ~/cuda-samples/NVIDIA*Samples
  make -j $(($(nproc) + 1))
  sudo shutdown -r now

check cuda installation, open a new terminal:

  cd ~/cuda-samples/NVIDIA*Samples
  bin/x86_64/linux/release/deviceQuery
  bin/x86_64/linux/release/bandwidthTest

3. Install CUDNN v6.
Download cudnn v6 from (https://developer.nvidia.com/cudnn) Install v6 for Tensorflow, 5.1 for matconvnet.

  cd ~/Downloads/
  tar xvf cudnn*.tgz
  cd cuda
  sudo cp */*.h /usr/local/cuda/include/
  sudo cp */*.so* /usr/local/cuda/lib64/
  
  Remove old Cudnn and upgrade to new ones:
  download cudnn6.0 version (not latest 7.0)
  
  sudo rm -rf /usr/local/cuda/include/cudnn.h
  sudo rm -rf /usr/local/cuda/lib64/libcudnn*
  to cudnn untar folders
  sudo cp include/cudnn.h /usr/local/cuda/include/
  sudo cp lib64/lib* /usr/local/cuda/lib64/
  cd /usr/local/cuda/lib64/
  sudo chmod +r libcudnn.so.6.0.21
  sudo ln -sf libcudnn.so.6.0.21 libcudnn.so.6
  sudo ln -sf libcudnn.so.6 libcudnn.so
  sudo ldconfig

4. Install Anaconda.
Download Anaconda from (https://www.anaconda.com/download/#linux)

  cd ~/Downloads
  bash Anaconda*.sh

Log out and log in again to activate the new variables (close and open the terminal).

5. Install other dependencies.

  sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
  sudo apt-get install --no-install-recommends libboost-all-dev
  sudo apt-get install libopenblas-dev
  sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

create symbolic link for hdf5:

  cd /usr/lib/x86_64-linux-gnu
  sudo ln -s libhdf5_serial.so.10.1.0 libhdf5.so
  sudo ln -s libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so

6. Download Caffe.
open a new terminal,

  git clone https://github.com/BVLC/caffe

download and copy the attached Makefile.config into caffe folder

7. Build Caffe.
open a terminal in caffe folder

  make all -j $(($(nproc) + 1))
  make test -j $(($(nproc) + 1))
  make runtest -j $(($(nproc) + 1))
  pip install protobuf
  make pycaffe -j $(($(nproc) + 1))
  echo "export CAFFE_ROOT=$(pwd)" >> ~/.bashrc
  echo 'export PYTHONPATH=$CAFFE_ROOT/python:$PYTHONPATH' >> ~/.bashrc
  conda install libgcc

8. Test the Caffe installation.
open a new terminal

  python
  import caffe

9. Matcaffe.
http://www.cs.jhu.edu/~cxliu/2016/compiling-matcaffe-on-ubuntu-1604.html

  make matcaffe
  export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
  export LD_PRELOAD=$LD_PRELOAD:/usr/lib/x86_64-linux-gnu/libstdc++.so.6:/usr/lib/x86_64-linux-gnu/libprotobuf.so.9

10. MatConvnet.
Download the latest MatConvnet

  export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6:/usr/lib/x86_64-linux-gnu/libprotobuf.so.9


  vl_compilenn('enableGpu', true, ...
           'enableCudnn', true) ;

11. Tensorflow (Binary).\
Install tensorflow via pip:

  sudo apt-get install python-pip python-dev
  sudo pip install -U pip
  pip install -U tensorflow-gpu==1.4.0 --user
  python -c "import tensorflow as tf; print(tf.__version__)"

12. Tensorflow (Sources).\

  Install bazel: sudo bash ./bazel....sh
  Install NCCL: tar xvf nccl-<version>.txz (https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html)
  Download tensorflow: git clone https://github.com/tensorflow/tensorflow 
  cd tensorflow
  ./configure

13. Eclipse C++.\

  sudo apt install -y eclipse-cdt-*
  URL=https://www.eclipse.org/downloads/download.php
  ECLIPSE=/oomph/epp/oxygen/R/eclipse-inst-linux64.tar.gz
  MIRROR=1
  
  wget -q -O eclipse-inst-linux64.tar.gz \
  "${URL}?file=${ECLIPSE}&mirror_id=${MIRROR}"
  
  tar zxf eclipse-inst-linux64.tar.gz
  ./eclipse-installer/eclipse-inst
  
  Open a text editor
  Copy and paste the following text into the editor: 
  
   [Desktop Entry]
    Version=1.0
    Name=Eclipse
    Comment=Java IDE
    Type=Application
    Categories=Development;IDE;
    Exec=/home/yixin/eclipse/cpp-oxygen/eclipse/eclipse
    Terminal=false
    StartupNotify=true
    Icon=/home/yixin/eclipse/cpp-oxygen/eclipse/icon.xpm
    Name[en_US]=Eclipse
  
  Update any paths if you extracted Eclipse to a different location
  Save the file as eclipse.desktop in /home/{username}/.local/share/applications/
  
  Reboot your machine
  Search for Eclipse
  Drag and drop the Eclipse icon to the launcher 

Cheers!

Feel free to contact me at (yixindu1573@gmail.com) for any questions.

Releases

No releases published

Packages

No packages published