This benchmark is built for neural text style transfer. We are still collecting the relevant results and paper, if you want to add your own paper on this benchmark, feel free to contact us by sending mail to szha2609 [at] uni.sydney.edu.au
or ykshi.1991 [at] foxmail.com
, we will update your data ASAP.
Dataset: Yelp | Content Preservation | Naturalness | Transfer Intensity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | WMD | BLEU | B-P | B-R | B-F1 | N-A | N-C | N-D | ACCU | EMD |
GTAE(shi2021gtae) | 0.1027 | 64.83 | 0.6991 | 0.7303 | 0.7149 | 0.6178 | 0.9272 | 0.6644 | 0.8870 | 0.8505 |
Language-Discriminator(yang2018) | 0.1014 | 63.77 | 0.7292 | 0.7329 | 0.7314 | 0.5886 | 0.9074 | 0.6389 | 0.8940 | 0.8559 |
Struct(tian2018) | 0.1224 | 61.98 | 0.7174 | 0.7220 | 0.7200 | 0.6205 | 0.9261 | 0.7002 | 0.8960 | 0.8574 |
StyleTrans-multi(dai2019) | 0.1536 | 63.08 | 0.7145 | 0.7203 | 0.7175 | 0.6133 | 0.9102 | 0.6909 | 0.8730 | 0.8316 |
DualRL(luo2019) | 0.1692 | 59.01 | 0.7125 | 0.6988 | 0.7057 | 0.5517 | 0.8996 | 0.6768 | 0.9050 | 0.8675 |
Texar(hu2018) | 0.1921 | 57.82 | -- | -- | -- | 0.6934 | 0.9373 | 0.7066 | 0.8850 | 0.8429 |
StyleTrans-cond(dai2019) | 0.2223 | 53.28 | 0.6205 | 0.6475 | 0.6341 | 0.6312 | 0.9109 | 0.6654 | 0.9290 | 0.8815 |
UnsuperMT(zhang2018) | 0.2450 | 46.25 | 0.6060 | 0.6206 | 0.6134 | 0.5755 | 0.9040 | 0.6625 | 0.9770 | 0.9372 |
UnpairedRL(xu2018) | 0.3122 | 46.09 | 0.4504 | 0.4709 | 0.4612 | 0.7136 | 0.9035 | 0.6493 | 0.5340 | 0.4989 |
DAR_Template(li2018) | 0.4156 | 57.10 | 0.4970 | 0.5406 | 0.5185 | 0.6370 | 0.8984 | 0.6299 | 0.8410 | 0.7948 |
DAR_DeleteOnly(li2018) | 0.4538 | 34.53 | 0.4158 | 0.4823 | 0.4490 | 0.6345 | 0.9072 | 0.5511 | 0.8750 | 0.8297 |
DAR_DeleteRetrieve(li2018) | 0.4605 | 36.72 | 0.4268 | 0.4799 | 0.4534 | 0.6564 | 0.9359 | 0.5620 | 0.9010 | 0.8550 |
CAAE(shen2017) | 0.5130 | 20.74 | 0.3585 | 0.3825 | 0.3710 | 0.4139 | 0.7006 | 0.5999 | 0.7490 | 0.7029 |
IMaT(jin2019) | 0.5571 | 16.92 | 0.4750 | 0.4249 | 0.4501 | 0.4878 | 0.8407 | 0.6691 | 0.8710 | 0.8198 |
Multi_Decoder(fu2018) | 0.5799 | 24.91 | 0.3117 | 0.3315 | 0.3223 | 0.4829 | 0.8394 | 0.6365 | 0.6810 | 0.6340 |
FineGrained-0.7(luo2019) | 0.6239 | 11.36 | 0.4023 | 0.3404 | 0.3717 | 0.3665 | 0.7125 | 0.5332 | 0.3960 | 0.3621 |
FineGrained-0.9(luo2019) | 0.6251 | 11.07 | 0.4030 | 0.3389 | 0.3713 | 0.3668 | 0.7148 | 0.5231 | 0.4180 | 0.3926 |
FineGrained-0.5(luo2019) | 0.6252 | 11.72 | 0.3994 | 0.3436 | 0.3718 | 0.3608 | 0.7254 | 0.5395 | 0.3280 | 0.2985 |
BackTranslation(prabhumoye2018) | 0.7566 | 2.81 | 0.2405 | 0.2024 | 0.2220 | 0.3686 | 0.5392 | 0.4754 | 0.9500 | 0.9117 |
Style_Emb(fu2018) | 0.8796 | 3.24 | 0.0166 | 0.0673 | 0.0429 | 0.5788 | 0.9075 | 0.6450 | 0.4490 | 0.4119 |
DAR_RetrieveOnly(li2018) | 0.8990 | 2.62 | 0.1368 | 0.1818 | 0.1598 | 0.8067 | 0.9717 | 0.7211 | 0.9610 | 0.9010 |
ARAE(zhao2018) | 0.9047 | 5.95 | 0.1680 | 0.1478 | 0.1584 | 0.4476 | 0.8120 | 0.6969 | 0.8278 | 0.7880 |
Dataset: Political | Content Preservation | Naturalness | Transfer Intensity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | WMD | BLEU | B-P | B-R | B-F1 | N-A | N-C | N-D | ACCU | EMD |
GTAE(shi2021gtae) | 0.1506 | 65.61 | 0.6577 | 0.6706 | 0.6640 | 0.3310 | 0.7852 | 0.7318 | 0.900 | 0.8990 |
CAAE(shen2017) | 0.4968 | 15.68 | 0.3217 | 0.3240 | 0.3230 | 0.2715 | 0.7052 | 0.7370 | 0.828 | 0.8259 |
DAR_DeleteOnly(li2018) | 0.5000 | 30.76 | 0.3295 | 0.3932 | 0.3605 | 0.3155 | 0.8534 | 0.6490 | 0.958 | 0.9565 |
DAR(li2018) | 0.5109 | 35.48 | 0.3352 | 0.3966 | 0.3649 | 0.3190 | 0.8472 | 0.7081 | 0.977 | 0.9747 |
DAR_RetrieveOnly(li2018) | 0.7771 | 10.14 | 0.1590 | 0.1840 | 0.1709 | 0.3219 | 0.7854 | 0.7271 | 0.998 | 0.9960 |
ARAE(zhao2018) | 1.0347 | 2.95 | 0.0203 | 0.0117 | 0.0158 | 0.3092 | 0.7763 | 0.7333 | 0.944 | 0.9412 |
Dataset: Title | Content Preservation | Naturalness | Transfer Intensity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | WMD | BLEU | B-P | B-R | B-F1 | N-A | N-C | N-D | ACCU | EMD |
GTAE(shi2021gtae) | 0.5161 | 19.67 | 0.1923 | 0.2134 | 0.2034 | 0.0949 | 0.4181 | 0.4567 | 0.956 | 0.9492 |
DAR_DeleteOnly(li2018) | 0.8413 | 4.75 | 0.0939 | 0.0412 | 0.0677 | 0.3912 | 0.8374 | 0.4495 | 0.881 | 0.8687 |
DAR(li2018) | 0.8567 | 5.04 | 0.0249 | 0.0212 | 0.0234 | 0.2462 | 0.7387 | 0.4625 | 0.933 | 0.9234 |
CAAE(shen2017) | 0.9226 | 0.82 | 0.0067 | -0.0099 | -0.0008 | 0.2167 | 0.5627 | 0.4422 | 0.972 | 0.9612 |
DAR_RetrieveOnly(li2018) | 0.9842 | 0.37 | -0.0383 | -0.0362 | -0.0365 | 0.1490 | 0.5701 | 0.4261 | 0.995 | 0.9856 |
ARAE(zhao2018) | 1.0253 | 0.00 | -0.0447 | -0.0539 | -0.0486 | 0.2318 | 0.6061 | 0.4765 | 0.989 | 0.9782 |
@article{shi2021gtae,
title={GTAE: Graph-Transformer based Auto-Encoders for Linguistic-Constrained Text Style Transfer},
author={Shi, Yukai and Zhang, Sen and Zhou, Chenxing and Liang, Xiaodan and Yang, Xiaojun and Lin, Liang},
journal={ACM Transactions on Intelligent Systems and Technology},
year={2021}
}
@article{dai2019,
title={Style transformer: Unpaired text style transfer without disentangled latent representation},
author={Dai, Ning and Liang, Jianze and Qiu, Xipeng and Huang, Xuanjing},
journal={arXiv preprint arXiv:1905.05621},
year={2019}
}
@article{luo2019,
title={A dual reinforcement learning framework for unsupervised text style transfer},
author={Luo, Fuli and Li, Peng and Zhou, Jie and Yang, Pengcheng and Chang, Baobao and Sui, Zhifang and Sun, Xu},
journal={arXiv preprint arXiv:1905.10060},
year={2019}
}
@article{zhang2018,
title="Style Transfer as Unsupervised Machine Translation",
author="Zhirui {Zhang} and Shuo {Ren} and Shujie {Liu} and Jianyong {Wang} and Peng {Chen} and Mu {Li} and Ming {Zhou} and Enhong {Chen}",
journal="arXiv preprint arXiv:1808.07894",
notes="Sourced from Microsoft Academic - https://academic.microsoft.com/paper/2888173624",
year="2018"
}
@article{xu2018,
title="Unpaired Sentiment-to-Sentiment Translation: A Cycled Reinforcement Learning Approach",
author="Jingjing {Xu} and Xu {Sun} and Qi {Zeng} and Xuancheng {Ren} and Xiaodong {Zhang} and Houfeng {Wang} and Wenjie {Li}",
journal="arXiv preprint arXiv:1805.05181",
notes="Sourced from Microsoft Academic - https://academic.microsoft.com/paper/2801454967",
year="2018"
}
@inproceedings{li2018,
title="Delete, retrieve, generate: A simple approach to sentiment and style transfer",
author="Juncen {Li} and Robin {Jia} and He {He} and Percy {Liang}",
booktitle="NAACL HLT 2018: 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
volume="1",
pages="1865--1874",
year="2018"
}
@article{shen2017,
title="Style transfer from non-parallel text by cross-alignment",
author="Tianxiao {Shen} and Tao {Lei} and Regina {Barzilay} and Tommi S. {Jaakkola}",
journal="Neural Information Processing Systems",
pages="6830--6841",
year="2017"
}
@article{jin2019,
title={IMaT: Unsupervised Text Attribute Transfer via Iterative Matching and Translation},
author={Jin, Zhijing and Jin, Di and Mueller, Jonas and Matthews, Nicholas and Santus, Enrico},
journal={arXiv preprint arXiv:1901.11333},
year={2019}
}
@article{fu2018,
title="Style transfer in text: Exploration and evaluation",
author="Zhenxin {Fu} and Xiaoye {Tan} and Nanyun {Peng} and Dongyan {Zhao} and Rui {Yan}",
journal="National Conference on Artificial Intelligence",
pages="663--670",
year="2018"
}
@article{prabhumoye2018,
title="Style transfer through back-translation",
author="Shrimai {Prabhumoye} and Yulia {Tsvetkov} and Ruslan {Salakhutdinov} and Alan W {Black}",
journal="Meeting of the Association for Computational Linguistics",
volume="1",
pages="866--876",
year="2018"
}
@inproceedings{zhao2018,
title="Adversarially regularized autoencoders",
author="Junbo Jake {Zhao} and Yoon {Kim} and Kelly {Zhang} and Alexander M. {Rush} and Yann {LeCun}",
booktitle="ICML 2018: Thirty-fifth International Conference on Machine Learning",
pages="9405--9420",
year="2018"
}
@article{hu2018,
title={Texar: A modularized, versatile, and extensible toolkit for text generation},
author={Hu, Zhiting and Shi, Haoran and Tan, Bowen and Wang, Wentao and Yang, Zichao and Zhao, Tiancheng and He, Junxian and Qin, Lianhui and Wang, Di and Ma, Xuezhe and others},
journal={arXiv preprint arXiv:1809.00794},
year={2018}
}
@inproceedings{yang2018,
title={Unsupervised text style transfer using language models as discriminators},
author={Yang, Zichao and Hu, Zhiting and Dyer, Chris and Xing, Eric P and Berg-Kirkpatrick, Taylor},
booktitle={Advances in Neural Information Processing Systems},
pages={7287--7298},
year={2018}
}
@article{tian2018,
title={Structured content preservation for unsupervised text style transfer},
author={Tian, Youzhi and Hu, Zhiting and Yu, Zhou},
journal={arXiv preprint arXiv:1810.06526},
year={2018}
}