Skip to content

Commit

Permalink
Update WeakTopology.lean
Browse files Browse the repository at this point in the history
  • Loading branch information
yoh-tanimoto committed Mar 7, 2024
1 parent 9aeb1bf commit 7e23600
Showing 1 changed file with 45 additions and 3 deletions.
48 changes: 45 additions & 3 deletions WeakTopology/WeakTopology.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,10 @@ variable {π•œ : Type*} [NontriviallyNormedField π•œ]
variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace π•œ E]


open NormedSpace

open NormedSpace Filter Set

theorem norm_topology_le_weak_topology :
(UniformSpace.toTopologicalSpace : TopologicalSpace E) ≀
(UniformSpace.toTopologicalSpace : TopologicalSpace E) ≀
(WeakSpace.instTopologicalSpace : TopologicalSpace (WeakSpace π•œ E)) := by
apply Continuous.le_induced
refine continuous_pi ?h.h
Expand All @@ -19,3 +18,46 @@ theorem norm_topology_le_weak_topology :
exact topDualPairing_apply y x
rw [this]
exact ContinuousLinearMap.continuous y


theorem weak_convergence_of_norm_convergence
(x : β„• β†’ E) (p : E) (hx : Tendsto x atTop (nhds p)) :
Tendsto (fun n ↦ (x n : (WeakSpace π•œ E))) atTop (nhds (p : (WeakSpace π•œ E))) := by
sorry
-- the statement is wrong, as x is always interpreted as E, not WeakSpace.

lemma tendsto_continuous_tendsto {X Y Z : Type*} [TopologicalSpace Y] [TopologicalSpace Z]
{F : Filter X} {f : X β†’ Y} {g : Y β†’ Z}
(y : Y) (hf : Tendsto f F (nhds y)) (hg : Continuous g) :
Tendsto (g ∘ f) F (nhds (g y)) := by
exact Tendsto.comp (Continuous.tendsto hg y) hf

theorem functional_convergence_of_norm_convergence
(x : β„• β†’ E) (p : E) (hx : Tendsto x atTop (nhds p)) :
βˆ€ (y : E β†’L[π•œ] π•œ), Tendsto (fun n => y (x n)) atTop (nhds (y p)) := by
intro y
exact Tendsto.comp (Continuous.tendsto (ContinuousLinearMap.continuous y) p) hx


variable (x : E)
variable (z : WeakSpace π•œ E)
variable (n : β„•)
#check (x : WeakSpace π•œ E)
#check nhds (x : WeakSpace π•œ E)
#check nhds z
#check nhds n
#check nhds (n : ℝ)
#check (n : ℝ)

variable (y : E β†’L[π•œ] π•œ)
variable (z : WeakDual π•œ E)
#check nhds (y : WeakDual π•œ E)
#check nhds z


theorem norm_convergence_of_weak_convergence
(x : β„• β†’ (WeakSpace π•œ E)) (p : (WeakSpace π•œ E)) (hx : Tendsto x atTop (nhds p)) :
Tendsto (fun n ↦ (x n : E)) atTop (nhds (p : E)) := by
exact hx
-- something is wrong. the statement is not interpreted as intended
-- because this second claim cannot be true

0 comments on commit 7e23600

Please sign in to comment.