Auto Vulnernability Fix Commit Classification
The dataset is available at location: MSR/2019/experiment/full_data_set_with_all_features.txt
Watch our presentation at SANER 2022: https://www.youtube.com/watch?v=S4a3wpHbVTw
Slides for the presentation in file: HERMES-SANER-2022_slides.pptx
Also PDF version: HERMES-SANER-2022_slides.pdf
in json format
Data Object Classes are described in entitites.py
python3 experiment.py --min_df 5 --use_linked_commits_only False --use_issue_classifier True --use_stacking_ensemble True --use-patch-context-lines False --tf-idf-threshold 0.005 --dataset sub_enhanced_dataset_th_100.txt
python3 experiment.py --min_df 5 --use_linked_commits_only True --use_issue_classifier True --use_stacking_ensemble True --use-patch-context-lines False --tf-idf-threshold 0.005 --dataset full_dataset_with_all_features.txt
Please extract zip files in MSR2019/experiment which contain dataset corresponding to different threshold (thresholds are written at postfix of file names).
After that, to run HERMES on different threshold, please use this command's template:
python3 experiment.py --min_df 5 --use_linked_commits_only True --use_issue_classifier True --use_stacking_ensemble True --use-patch-context-lines False --tf-idf-threshold 0.005 --dataset file_name
where file_name is name of file in list of files just extracted
Link to our issue corpus: https://zenodo.org/record/5602211#.YXjQg9ZBxO8
Descriptions for parameter in command:
- min_df [real]: Min document frequency to filter out infrequent terms
- use_linked_commits_only [boolean]: Option to use all commits in dataset for training and testing, or only use commits where each contain at least one issue linked to Github or Jira issue tracker
- use_issue_classifier [boolean]: Option to use or not use issue classifier in HERMES. If not, HERMES contain only message classifier and patch classifier
- use_stacking_ensemble [boolean]: Option to use stacking ensemble or simple voting to combine base classifier (i.e. message classsifier, patch classifier, issue classifier). If true, use stacking ensemble for combination. Otherwise, use simple voting
- tf-idf-threshold [real]: Option in issue classifier to filter out noises in issue classifier
- dataset [string]: Name of the dataset selected for experiment