This repository contains jupyter notebooks and other materials taught in TA sessions of Deep Learning course (CE719) instructed by Dr. Beigy at Sharif University of Technology.
- Introduction to deep learning frameworks
- Introduction to Python & NumPy
- Introduction to PyTorch
- video link : https://drive.google.com/file/d/1iYMNg3iiCZ45lAxildljWq6ZTuPq8FZu/view?usp=sharing
- PyTorch modules
- An example of MLP
- video link : https://drive.google.com/file/d/1eZUI3hEqXAsUdSo9lll-8OgjyoquEoB6/view?usp=sharing
- HW1 description
- Optimizers description
- Video and files link: https://drive.google.com/file/d/1rdHf7lrtoxSCxlAoRlEi6ofhMwez7wA5/view?usp=sharing
- hardware requirements for NN
- introduction to CNN with pytorch
- Video and files link: https://drive.google.com/file/d/1kRSUW4zBi5o2-37QoYeQf1B4dB6konT_/view?usp=sharing
- Types of Convolutional Neural Nets
- Custom Dataloader, Transforms
- Normalization
- Transfer Learning
- train and test SVHN dataset ----> pkg version : torch==1.1.0 , tensorflow-gpu==1.10.0
- Video link (part1): https://drive.google.com/file/d/17VbrdsSOg-YRC38cO2YXG3NZ_QWu-Al8/view?usp=sharing
- Video link (part2): https://drive.google.com/file/d/1lnYPCS9bBznIPCvpwJdSUAsMuUapJfv6/view?usp=sharing
- HW2 description
- Intro to Recurrent Neural Networks
- Intro to TorchText
- Sentiment Analysis with LSTM
- Custom Loss function
- Video link : https://drive.google.com/file/d/11SVYuo5AwhwvRUeY-avUeR3CUXYprIlb/view?usp=sharing
- Advanced topics in RNN
- Video Link (part1): https://drive.google.com/file/d/1jUf88cZBsItppDlSyeV1bRL01ICj4574/view?usp=drivesdk
- Video Link (part2): https://drive.google.com/file/d/10RcDVK7La5k-0guxilO5-bjeFa2lnRlN/view?usp=drivesdk
- Implementation of Neural Machine Translation
- Tutorial Link: https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
- Neural Networks & Debugging
- Video Link: https://drive.google.com/file/d/1E0fAigYlL1brF9NK7rq4mzIwGayT0oM7/view?usp=sharing
- Intro to Graph Neural Nets
- Intro to NetworkX, Pytorch Geometric
- A Simple GCN for node classification
- Video Link: https://drive.google.com/file/d/1EY7ybU1EvvxMYJLx3OJykmWKzIpiDdP7/view?usp=sharing
- Variational AutoEncoder (VAE)
- Theory of VAE
- pytorch code for VAE on MNIST dataset
- Video Link: https://drive.google.com/file/d/1NDiaGuun6z7L7VikWfs71hmpNN0PUmo6/view?usp=sharing
- VAE and GAN
- Theory of VAE and GAN
- Be Sure to Read "Correction.pdf" !
- BigGan Pre-trained on IMAGENET Demo.
- video Link: https://drive.google.com/file/d/1AWNwDeLo-2ZOsyPcyU4NhRpTbIHr6V_m/view?usp=sharing