-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ff581a6
commit fc604f6
Showing
1 changed file
with
112 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import torch | ||
import argparse | ||
import librosa | ||
import os | ||
import numpy as np | ||
from istft import ISTFT | ||
from aia_trans import aia_complex_trans_mag, aia_complex_trans_ri, dual_aia_trans_merge_crm | ||
import soundfile as sf | ||
|
||
os.environ['CUDA_VISIBLE_DEVICES'] = '2' | ||
def enhance(args): | ||
model = dual_aia_trans_merge_crm() | ||
checkpoint = torch.load(args.Model_path) | ||
model.load_state_dict(checkpoint) | ||
print(model) | ||
model.eval() | ||
model.cuda() | ||
|
||
with torch.no_grad(): | ||
cnt = 0 | ||
mix_file_path = args.mix_file_path | ||
esti_file_path = args.esti_file_path | ||
file_list = os.listdir(mix_file_path) | ||
istft = ISTFT(filter_length=320, hop_length=160, window='hanning') | ||
for file_id in file_list: | ||
feat_wav, _ = sf.read(os.path.join(mix_file_path, file_id)) | ||
c = np.sqrt(len(feat_wav) / np.sum((feat_wav ** 2.0))) | ||
feat_wav = feat_wav * c | ||
wav_len = len(feat_wav) | ||
frame_num = int(np.ceil((wav_len - 320 + 320) / 160 + 1)) | ||
fake_wav_len = (frame_num - 1) * 160 + 320 - 320 | ||
left_sample = fake_wav_len - wav_len | ||
feat_wav = torch.FloatTensor(np.concatenate((feat_wav, np.zeros([left_sample])), axis=0)) | ||
feat_x = torch.stft(feat_wav.unsqueeze(dim=0), n_fft=320, hop_length=160, win_length=320, | ||
window=torch.hann_window(320)).permute(0, 3, 2, 1) | ||
noisy_phase = torch.atan2(feat_x[:, -1, :, :], feat_x[:, 0, :, :]) | ||
feat_x_mag = (torch.norm(feat_x, dim=1)) ** 0.5 | ||
feat_x = torch.stack((feat_x_mag * torch.cos(noisy_phase), feat_x_mag * torch.sin(noisy_phase)), dim=1) | ||
esti_x = model(feat_x.cuda()) | ||
esti_mag, esti_phase = torch.norm(esti_x, dim=1), torch.atan2(esti_x[:, -1, :, :], | ||
esti_x[:, 0, :, :]) | ||
esti_mag = esti_mag ** 2 | ||
esti_com = torch.stack((esti_mag * torch.cos(esti_phase), esti_mag * torch.sin(esti_phase)), dim=1) | ||
esti_com = esti_com.cpu() | ||
esti_utt = istft(esti_com).squeeze().numpy() | ||
esti_utt = esti_utt[:wav_len] | ||
esti_utt = esti_utt / c | ||
os.makedirs(os.path.join(esti_file_path), exist_ok=True) | ||
sf.write(os.path.join(esti_file_path, file_id), esti_utt, args.fs) | ||
print(' The %d utterance has been decoded!' % (cnt + 1)) | ||
cnt += 1 | ||
|
||
def enhance_ri(args): | ||
model = aia_complex_trans_ri() | ||
checkpoint = torch.load(args.Model_path)['model_state_dict'] | ||
model.load_state_dict(checkpoint) | ||
print(model) | ||
model.eval() | ||
model.cuda() | ||
|
||
with torch.no_grad(): | ||
cnt = 0 | ||
mix_file_path = args.mix_file_path | ||
esti_file_path = args.esti_file_path | ||
file_list = os.listdir(mix_file_path) | ||
istft = ISTFT(filter_length=320, hop_length=160, window='hanning') | ||
for file_id in file_list: | ||
feat_wav, _ = sf.read(os.path.join(mix_file_path, file_id)) | ||
c = np.sqrt(len(feat_wav) / np.sum((feat_wav ** 2.0))) | ||
feat_wav = feat_wav * c | ||
wav_len = len(feat_wav) | ||
frame_num = int(np.ceil((wav_len - 320 + 320) / 160 + 1)) | ||
fake_wav_len = (frame_num - 1) * 160 + 320 - 320 | ||
left_sample = fake_wav_len - wav_len | ||
feat_wav = torch.FloatTensor(np.concatenate((feat_wav, np.zeros([left_sample])), axis=0)) | ||
feat_x = torch.stft(feat_wav.unsqueeze(dim=0), n_fft=320, hop_length=160, win_length=320, | ||
window=torch.hann_window(320)).permute(0, 3, 2, 1) | ||
noisy_phase = torch.atan2(feat_x[:, -1, :, :], feat_x[:, 0, :, :]) | ||
feat_x_mag = (torch.norm(feat_x, dim=1)) ** 0.5 | ||
feat_x = torch.stack((feat_x_mag * torch.cos(noisy_phase), feat_x_mag * torch.sin(noisy_phase)), dim=1) | ||
esti_x = model(feat_x.cuda()) | ||
esti_mag, esti_phase = torch.norm(esti_x, dim=1), torch.atan2(esti_x[:, -1, :, :], | ||
esti_x[:, 0, :, :]) | ||
esti_mag = esti_mag ** 2 | ||
esti_com = torch.stack((esti_mag * torch.cos(esti_phase), esti_mag * torch.sin(esti_phase)), dim=1) | ||
esti_com = esti_com.cpu() | ||
esti_utt = istft(esti_com).squeeze().numpy() | ||
esti_utt = esti_utt[:wav_len] | ||
esti_utt = esti_utt / c | ||
os.makedirs(os.path.join(esti_file_path), exist_ok=True) | ||
sf.write(os.path.join(esti_file_path, file_id), esti_utt, args.fs) | ||
print(' The %d utterance has been decoded!' % (cnt + 1)) | ||
cnt += 1 | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
|
||
|
||
|
||
parser = argparse.ArgumentParser('Recovering audio') | ||
parser.add_argument('--mix_file_path', type=str, default='/home/yuguochen/DNS_NONBLIND_TEST/no_reverb_noisy/') | ||
parser.add_argument('--esti_file_path', type=str, default='./estimated_audio/dns_nonblind_test/aia_merge_dns300_best') | ||
parser.add_argument('--snr', type=list, default=[-5, 0, 5, 10, 15, 20]) # -5 -2 0 2 5 | ||
parser.add_argument('--fs', type=int, default=16000, | ||
help='The sampling rate of speech') | ||
parser.add_argument('--Model_path', type=str, default='./BEST_MODEL/aia_merge_dns300.pth.tar', | ||
help='The place to save best model') | ||
args = parser.parse_args() | ||
print(args) | ||
enhance(args=args) | ||
|