Skip to content

Commit

Permalink
Formatting
Browse files Browse the repository at this point in the history
  • Loading branch information
zachartrand committed Oct 20, 2023
1 parent 3e8d588 commit 0eebbac
Showing 1 changed file with 21 additions and 23 deletions.
44 changes: 21 additions & 23 deletions index.md
Original file line number Diff line number Diff line change
Expand Up @@ -128,10 +128,8 @@ Regarding the natural logarithm, the geometric series we are interested in is th
and $r = -x$:

$$
\begin{align}
\frac{1}{1-(-x)} & = 1 + (-x) + (-x)^2 + (-x)^3 + \ldots + (-x)^n + \ldots \nonumber \\
\frac{1}{1+x} & = 1 - x + x^2 - x^3 + x^4 + \ldots + (-x)^n + \ldots
\end{align}
\frac{1}{1-(-x)} = 1 + (-x) + (-x)^2 + (-x)^3 + \ldots + (-x)^n + \ldots \nonumber \\
\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + \ldots + (-x)^n + \ldots
$$

This series converges when $|x| < 1$. Now, you might think that some of the algebraic
Expand Down Expand Up @@ -189,10 +187,10 @@ Starting with the first term,

$$
\begin{align*}
\int_{0}^{x} 1 dt & = \int_{0}^{x} 1t^0 dt \\
& = \frac{t^{0+1}}{0+1} \Big|_0^x \\
& = \frac{t^1}{1} \Big|_0^x \\
& = t \Big|_0^x \\
\int_{0}^{x} 1 dt & = \int_{0}^{x} 1t^0 dt \\
& = \frac{t^{0+1}}{0+1} \Big|_{t=0}^{t=x} \\
& = \frac{t^1}{1} \Big|_{t=0}^{t=x} \\
& = t \Big|_{t=0}^{t=x} \\
& = x - 0 = x
\end{align*}
$$
Expand All @@ -207,10 +205,10 @@ $\ln(1+x)$ is $x$! Let's do the second term:

$$
\begin{align*}
\int_{0}^{x} -t dt & = \int_{0}^{x} -t^1 dt \\
& = -\frac{t^{1+1}}{1+1} \Big|_0^x = -\frac{t^2}{2} \Big|_0^x \\
& = -\frac{x^2}{2} - \biggl(-\frac{0^2}{2} \biggr) \\
& = -\frac{x^2}{2} + 0 \\
\int_{0}^{x} -t dt & = \int_{0}^{x} -t^1 dt \\
& = -\frac{t^{1+1}}{1+1} \Big|_0^x = -\frac{t^2}{2} \Big|_{t=0}^{t=x} \\
& = -\frac{x^2}{2} - \biggl(-\frac{0^2}{2} \biggr) \\
& = -\frac{x^2}{2} + 0 \\
& = -\frac{x^2}{2}
\end{align*}
$$
Expand All @@ -219,9 +217,9 @@ Our second term is $-\frac{x^2}{2}$. You may start to see the overall pattern,

$$
\begin{align*}
\int_{0}^{x} t^2 dt & = \frac{t^{2+1}}{2+1} \Big|_0^x \\
& = \frac{t^3}{3} \Big|_0^x \\
& = \frac{x^3}{3} - \frac{0^3}{3} \\
\int_{0}^{x} t^2 dt & = \frac{t^{2+1}}{2+1} \Big|_{t=0}^{t=x} \\
& = \frac{t^3}{3} \Big|_{t=0}^{t=x} \\
& = \frac{x^3}{3} - \frac{0^3}{3} \\
& = \frac{x^3}{3}
\end{align*}
$$
Expand All @@ -233,18 +231,18 @@ terms are negative. Written as a series,
$$
\begin{align}
\ln(1+x) & = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} \\
& = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots
\ln(1+x) & = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots
\end{align}
$$

In fact, if we were to integrate the general term of the geometric series, this is exactly what we get:

$$
\begin{align*}
\int_0^x \frac{1}{1+t} dt & = \int_0^x \sum_{n=0}^{\infty} (-t)^n dt \\
& = \sum_{n=0}^\infty \biggl( \int_0^x (-t)^n dt \biggr) \\
& = \sum_{n=0}^\infty \biggl( \int_0^x (-1)^n t^n dt \biggr) \\
& = \Biggl( \sum_{n=0}^\infty (-1)^n \frac{t^{n+1}}{n+1} \Biggr) \Bigg|_{t=0}^x \\
\int_0^x \frac{1}{1+t} dt & = \int_0^x \sum_{n=0}^{\infty} (-t)^n dt \\
& = \sum_{n=0}^\infty \biggl( \int_0^x (-t)^n dt \biggr) \\
& = \sum_{n=0}^\infty \biggl( \int_0^x (-1)^n t^n dt \biggr) \\
& = \Biggl( \sum_{n=0}^\infty (-1)^n \frac{t^{n+1}}{n+1} \Biggr) \Bigg|_{t=0}^{t=x} \\
& = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}
\end{align*}
$$
Expand Down Expand Up @@ -421,12 +419,12 @@ our main input into the series input, while the subtraction of the logarithms on
addition, subtraction, and division.[^radiusofconvergence] Subtracting the logarithms is the clear winner.
Now we can take our two series and combine them in this manner:

[^radiusofconvergence]: This also conveniently maps all of the positive reals to the domain $-1 < x < 1$, giving
[^radiusofconvergence]: This also conveniently maps all of the positive reals to the domain $x \in (-1, 1)$, giving
us an infinite radius of convergence, as we see in the graph.

$$
\begin{align*}
\ln(1+x) - \ln(1-x) = & x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}
\ln(1+x) - \ln(1-x) = \space & x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}
+ \frac{x^5}{5} - \frac{x^6}{6} + \ldots \\
- \space (- & x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4}
- \frac{x^5}{5} - \frac{x^6}{6} - \ldots)
Expand All @@ -437,7 +435,7 @@ Distributing the negative sign on the second series, we get

$$
\begin{align*}
\ln(1+x) - \ln(1-x) = & x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5}
\ln(1+x) - \ln(1-x) = \space & x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5}
- \frac{x^6}{6} + \ldots \\
+ \space & x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} + \frac{x^6}{6} + \ldots ,
\end{align*}
Expand Down

0 comments on commit 0eebbac

Please sign in to comment.