Skip to content

zzmtsvv/smaller_micrograd

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Smaller MicroGrad

Tried to do autograd engine based on Karpathy's micrograd repo (and on the basis of PyTorch)

Examples

Regression (it actually learns something!)

from autograd.tensor import Tensor
from autograd import nn
from autograd.optim import SGD
from sklearn.datasets import load_boston


class Regressor(nn.Module):
    def __init__(self,
                 in_features: int) -> None:
        super().__init__()

        self.l1 = nn.Linear(in_features, 32)
        self.l2 = nn.Linear(32, 1)
    
    def forward(self, x):
        return self.l2(self.l1(x).relu())


x, y = load_boston(return_X_y=True)
x, y = Tensor(x), Tensor(y).reshape(-1, 1)


net = Regressor(x.shape[1])
optimizer = SGD(net.parameters(), lr=1e-6)

errors = []
iters = 1000

for i in range(iters):
    net.zero_grad()

    loss = nn.MSELoss(net(x), y)
    errors.append(loss.data.flatten())

    loss.backward()
    optimizer.step()

print(np.sqrt(loss.data[0]))

Classification (it also learns something!)

from autograd.tensor import Tensor
from autograd import nn
from autograd.optim import SGD
from sklearn.datasets import load_iris


class Classifier(nn.Module):
    def __init__(self,
                 in_features: int,
                 out_features: int) -> None:
        super().__init__()

        self.l1 = nn.Linear(in_features, 32)
        self.l2 = nn.Linear(32, out_features)
    
    def forward(self, x):
        out = self.l1(x).relu()
        return self.l2(out).softmax(axis=1)


x, y = load_iris(return_X_y=True)
x = (x - x.mean(axis=0)) / x.std(axis=0)
x, y = Tensor(x), nn.one_hot(y)


net = Classifier(in_features=x.shape[1], out_features=3)
optimizer = SGD(net.parameters(), lr=3e-4)

errors = []
iters = 10000

for i in range(iters):
    net.zero_grad()

    loss = nn.CrossEntropyLoss(net(x), y)
    errors.append(loss.data.flatten())

    loss.backward()
    optimizer.step()

print(loss)

References

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published