Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sharrow fix all #15

Merged
merged 16 commits into from
May 22, 2024
4 changes: 2 additions & 2 deletions configs/resident/accessibility.csv
Original file line number Diff line number Diff line change
Expand Up @@ -19,11 +19,11 @@ auto off-peak total,auOpTotal,df.emp_total * _decay
#,, transit peak
#,, assume peak outbound transit occurs in AM
o-d peak transit time,_inVehicletime_od,"skim_od[('WALK_MIX_TOTALIVTT', 'AM')]"
o-d out of vehicle transit time,_outOfVehicleTime_od,"skim_od[('WALK_MIX_FIRSTWAIT', 'AM')] + skim_od[('WALK_MIX_XFERWAIT', 'AM')] + reindex(df.walk_dist_local_bus, df.orig) + skim_od[('WALK_MIX_XFERWALK', 'AM')] + reindex(df.walk_dist_local_bus, df.dest)"
o-d out of vehicle transit time,_outOfVehicleTime_od,"skim_od[('WALK_MIX_FIRSTWAIT', 'AM')] + skim_od[('WALK_MIX_XFERWAIT', 'AM')] + df.landuse_orig_walk_dist_local_bus + skim_od[('WALK_MIX_XFERWALK', 'AM')] + df.walk_dist_local_bus"
total o-d peak transit time,_trPkTime_od,(_inVehicletime_od + out_of_vehicle_time_weight * _outOfVehicleTime_od)
#,, assume peak inbound transit occurs in PM
o-d peak transit time,_inVehicletime_do,"skim_do[('WALK_MIX_TOTALIVTT', 'PM')]"
o-d out of vehicle transit time,_outOfVehicleTime_do,"skim_do[('WALK_MIX_FIRSTWAIT', 'PM')] + skim_do[('WALK_MIX_XFERWAIT', 'PM')] + reindex(df.walk_dist_local_bus, df.orig) + skim_do[('WALK_MIX_XFERWALK', 'PM')] + reindex(df.walk_dist_local_bus, df.dest)"
o-d out of vehicle transit time,_outOfVehicleTime_do,"skim_do[('WALK_MIX_FIRSTWAIT', 'PM')] + skim_do[('WALK_MIX_XFERWAIT', 'PM')] + df.landuse_orig_walk_dist_local_bus + skim_do[('WALK_MIX_XFERWALK', 'PM')] + df.walk_dist_local_bus"
total o-d peak transit time,_trPkTime_do,(_inVehicletime_do + out_of_vehicle_time_weight * _outOfVehicleTime_do)
#,,
#o-d peak transit time,_trPkTime_do,"skim_do[('WALK_MIX_TOTALIVTT', 'PM')]"
Expand Down
5 changes: 4 additions & 1 deletion configs/resident/accessibility.yaml
Original file line number Diff line number Diff line change
@@ -1,7 +1,10 @@

# columns from land_use table to add to df
# columns from land_use table to add to df for destinations
land_use_columns: ['emp_ret', 'emp_total', 'hh', 'walk_dist_local_bus']

# columns from land_use table to add to df for origins
land_use_columns_orig: ['walk_dist_local_bus']

CONSTANTS:
# dispersion parameters
dispersion_parameter_automobile: -0.05
Expand Down
2 changes: 1 addition & 1 deletion configs/resident/cdap.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -47,4 +47,4 @@ annotate_households:
- persons

compute_settings:
sharrow_skip: true
fastmath: false
2 changes: 1 addition & 1 deletion configs/resident/cdap_joint_tour_coefficients.csv
Original file line number Diff line number Diff line change
Expand Up @@ -15,5 +15,5 @@ Label,description,Expression,dependency,coefficient
,No Car Households,auto_ownership_p1 == 0,,0
,Cars Less than Workers,auto_ownership_p1 < num_workers_p1,,0.088402389
,Cars More than Workers,auto_ownership_p1 > num_workers_p1,,-0.005896499
,WorkAccessForMandatoryDap,"@df.workplace_modechoice_logsum_px.fillna(0)",M_px,0.17217579
,WorkAccessForMandatoryDap,"@np.nan_to_num(df.workplace_modechoice_logsum_px)",M_px,0.17217579
,If All Adults stay at Home/ None of the Adults have Dap 1 or 2,(ptype_pxprod < 7) | (ptype_pxprod > 6),H_px,-0.988838929
58 changes: 29 additions & 29 deletions configs/resident/joint_tour_frequency_composition.csv

Large diffs are not rendered by default.

3 changes: 0 additions & 3 deletions configs/resident/joint_tour_frequency_composition.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,3 @@ ALTS_TABLE_STRUCTURE:
1: adults
2: children
3: mixed

compute_settings:
sharrow_skip: true
3 changes: 2 additions & 1 deletion configs/resident/joint_tour_scheduling.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -13,4 +13,5 @@ preprocessor:
- joint_tour_participants

compute_settings:
sharrow_skip: true
use_numexpr: true
# require numexpr for legacy eval to prevent overflow when squaring start times
4 changes: 2 additions & 2 deletions configs/resident/logging.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,8 @@ logging:
handlers: [console, logfile]
propagate: false

orca:
level: WARN
sharrow:
level: INFO
handlers: [console, logfile]
propagate: false

Expand Down
21 changes: 14 additions & 7 deletions configs/resident/non_mandatory_tour_scheduling.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -54,32 +54,38 @@ SPEC_SEGMENTS:
SPEC: tour_scheduling_nonmandatory_escort.csv
COEFFICIENTS: tour_scheduling_nonmandatory_escort_coefficients.csv
compute_settings:
sharrow_skip: true
use_numexpr: true
use_bottleneck: false
shopping:
SPEC: tour_scheduling_nonmandatory_shopping.csv
COEFFICIENTS: tour_scheduling_nonmandatory_shopping_coefficients.csv
compute_settings:
sharrow_skip: true
use_numexpr: true
use_bottleneck: false
eatout:
SPEC: tour_scheduling_nonmandatory_eatout.csv
COEFFICIENTS: tour_scheduling_nonmandatory_eatout_coefficients.csv
compute_settings:
sharrow_skip: true
use_numexpr: true
use_bottleneck: false
othdiscr:
SPEC: tour_scheduling_nonmandatory_othdiscr.csv
COEFFICIENTS: tour_scheduling_nonmandatory_othdiscr_coefficients.csv
compute_settings:
sharrow_skip: true
use_numexpr: true
use_bottleneck: false
othmaint:
SPEC: tour_scheduling_nonmandatory_othmaint.csv
COEFFICIENTS: tour_scheduling_nonmandatory_othmaint_coefficients.csv
compute_settings:
sharrow_skip: true
use_numexpr: true
use_bottleneck: false
social:
SPEC: tour_scheduling_nonmandatory_social.csv
COEFFICIENTS: tour_scheduling_nonmandatory_social_coefficients.csv
compute_settings:
sharrow_skip: true
use_numexpr: true
use_bottleneck: false

## alts preprocessor keyed by <spec_segment>
#ALTS_PREPROCESSOR:
Expand All @@ -105,4 +111,5 @@ SPEC_SEGMENTS:
DESTINATION_FOR_TOUR_PURPOSE: destination

compute_settings:
sharrow_skip: true
use_numexpr: true
use_bottleneck: false
2 changes: 1 addition & 1 deletion configs/resident/school_escorting.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -47,4 +47,4 @@ CONSTANTS:
mins_per_time_bin: 30

compute_settings:
sharrow_skip: true
fastmath: false
10 changes: 10 additions & 0 deletions configs/resident/settings.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -186,3 +186,13 @@ models:
- track_skim_usage
- write_trip_matrices
- write_tables

# These skim tables are included in the model as two sets, one as
# time-independent (e.g. BIKE_TIME) and one as time-dependent
# (e.g. BIKE_TIME__AM), although the actual data is all time-independent.
# This prevents the (pseudo-) time-dependent tables from being loaded,
# which would be a waste of memory, and causes problems with the
# two-zone data backing these skims.
omx_ignore_patterns:
- "BIKE_TIME__.+"
- "BIKE_LOGSUM__.+"
3 changes: 0 additions & 3 deletions configs/resident/tour_mode_choice.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,3 @@ LOGSUM_CHOOSER_COLUMNS:
- transit_pass_ownership

MODE_CHOICE_LOGSUM_COLUMN_NAME: mode_choice_logsum

compute_settings:
sharrow_skip: true
Original file line number Diff line number Diff line change
Expand Up @@ -163,11 +163,11 @@ Destination Terminal Time,dTermTime,"reindex(land_use.terminal_time,destination)
#,,,
# Below bike info is not defined and is turned off!!,,,
Person is female,female,(df.sex == 2),
bike logsum inbound,bikeLSI,odt_skims['BIKE_LOGSUM'],
bike logsum outbound (same as inbound),bikeLSO,dot_skims['BIKE_LOGSUM'],
bike logsum inbound,bikeLSI,od_skims.reverse('BIKE_LOGSUM'),
bike logsum outbound (same as inbound),bikeLSO,od_skims['BIKE_LOGSUM'],
bike availability,bikeAvailable,(bikeLSI > -300) & (bikeLSO > -300) & (od_skims['DIST'] < max_bike_distance),
bike time inbound,bike_time_inb,dot_skims['BIKE_TIME'],
bike time outbound,bike_time_out,odt_skims['BIKE_TIME'],
bike time inbound,bike_time_inb,od_skims.reverse('BIKE_TIME'),
bike time outbound,bike_time_out,od_skims['BIKE_TIME'],
#,,,
"Cost factor for shared 2 tours, 1/(2^0.8)",costFactorS2,0.57,
"Cost factor for shared 3+ tours, 1/(3.5^0.8)",costFactorS3,0.37,
Expand Down
4 changes: 2 additions & 2 deletions configs/resident/tour_scheduling_joint.csv
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ util_shop_Departure_Constant_10_00_AM_10_30_AM,SHOPPING - Departure Constant: 10
util_shop_Departure_Constant_10_30_AM_11_00_AM,SHOPPING - Departure Constant: 10:30 AM - 11:00 AM,@((df.tour_category == 'joint') & (df.tour_type == 'shopping') & (df.start==16)),coef_shop_Departure_Constant_10_30_AM_11_00_AM
util_shop_Departure_Constant_After_11_00_AM,SHOPPING - Departure Constant: After 11:00 AM,@((df.tour_category == 'joint') & (df.tour_type == 'shopping') & (df.start>16)),coef_shop_Departure_Constant_After_11_00_AM
util_shop_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Linear,SHOPPING - Departure Constant: Shift for every 30 minutes after 11:30 am - Linear,"@np.where(((df.tour_category == 'joint') & (df.tour_type == 'shopping') & (df.start>17)), ((17-df.start)*(df.start<=17) + (df.start-17)*(df.start>17)), 0)",coef_shop_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Linear
util_shop_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Squared,SHOPPING - Departure Constant: Shift for every 30 minutes after 11:30 am - Squared,"@np.where(((df.tour_category == 'joint') & (df.tour_type == 'shopping') & (df.start>17)), (((17-df.start)*(df.start<=17) + (df.start-17)*(df.start>17)) ** 2), 0)",coef_shop_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Squared
util_shop_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Squared,SHOPPING - Departure Constant: Shift for every 30 minutes after 11:30 am - Squared,"@np.where(((df.tour_category == 'joint') & (df.tour_type == 'shopping') & (df.start>17)), (((17-df.start)*(df.start<=17) + (df.start-17)*(df.start>17)).astype(np.float32) ** 2), 0)",coef_shop_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Squared
util_shop_Arrival_Constant_Shift_for_every_30_minutes_before_12_00_pm_Linear,SHOPPING - Arrival Constant: Shift for every 30 minutes before 12:00 pm - Linear,"@np.where(((df.tour_category == 'joint') & (df.tour_type == 'shopping') & (df.end<19)), ((19-df.end)*(df.end<=19) + (df.end-19)*(df.end>19)), 0)",coef_shop_Arrival_Constant_Shift_for_every_30_minutes_before_12_00_pm_Linear
util_shop_Arrival_Constant_Before_12_30_PM,SHOPPING - Arrival Constant: Before 12:30 PM,@((df.tour_category == 'joint') & (df.tour_type == 'shopping') & (df.end<20)),coef_shop_Arrival_Constant_Before_12_30_PM
util_shop_Arrival_Constant_12_30_PM_03_00_PM,SHOPPING - Arrival Constant: 12:30 PM - 03:00 PM,@((df.tour_category == 'joint') & (df.tour_type == 'shopping') & ( df.end>=20) & (df.end<=24)),coef_shop_Arrival_Constant_12_30_PM_03_00_PM
Expand Down Expand Up @@ -70,7 +70,7 @@ util_maint_Departure_Constant_10_00_AM_10_30_AM,MAINTENANCE - Departure Constant
util_maint_Departure_Constant_10_30_AM_11_00_AM,MAINTENANCE - Departure Constant: 10:30 AM - 11:00 AM,@((df.tour_category == 'joint') & (df.tour_type == 'othmaint') & (df.start==16)),coef_maint_Departure_Constant_10_30_AM_11_00_AM
util_maint_Departure_Constant_After_11_00_AM,MAINTENANCE - Departure Constant: After 11:00 AM,@((df.tour_category == 'joint') & (df.tour_type == 'othmaint') & (df.start>16)),coef_maint_Departure_Constant_After_11_00_AM
util_maint_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Linear,MAINTENANCE - Departure Constant: Shift for every 30 minutes after 11:30 am - Linear,"@np.where(((df.tour_category == 'joint') & (df.tour_type == 'othmaint') & (df.start>17)), ((17-df.start)*(df.start<=17) + (df.start-17)*(df.start>17)), 0)",coef_maint_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Linear
util_maint_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Squared,MAINTENANCE - Departure Constant: Shift for every 30 minutes after 11:30 am - Squared,"@np.where(((df.tour_category == 'joint') & (df.tour_type == 'othmaint') & (df.start>17)), (((17-df.start)*(df.start<=17) + (df.start-17)*(df.start>17)) ** 2), 0)",coef_maint_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Squared
util_maint_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Squared,MAINTENANCE - Departure Constant: Shift for every 30 minutes after 11:30 am - Squared,"@np.where(((df.tour_category == 'joint') & (df.tour_type == 'othmaint') & (df.start>17)), (((17-df.start)*(df.start<=17) + (df.start-17)*(df.start>17)).astype(np.float32) ** 2), 0)",coef_maint_Departure_Constant_Shift_for_every_30_minutes_after_11_30_am_Squared
util_maint_Arrival_Constant_Shift_for_every_30_minutes_before_10_00_am_Linear,MAINTENANCE - Arrival Constant: Shift for every 30 minutes before 10:00 am - Linear,"@np.where(((df.tour_category == 'joint') & (df.tour_type == 'othmaint') & (df.end<15)), ((15-df.end)*(df.end<=15) + (df.end-15)*(df.end>15)), 0)",coef_maint_Arrival_Constant_Shift_for_every_30_minutes_before_10_00_am_Linear
util_maint_Arrival_Constant_Before_10_30_AM,MAINTENANCE - Arrival Constant: Before 10:30 AM,@((df.tour_category == 'joint') & (df.tour_type == 'othmaint') & (df.end<16)),coef_maint_Arrival_Constant_Before_10_30_AM
util_maint_Arrival_Constant_10_30_AM_11_00_AM,MAINTENANCE - Arrival Constant: 10:30 AM - 11:00 AM,@((df.tour_category == 'joint') & (df.tour_type == 'othmaint') & (df.end==16)),coef_maint_Arrival_Constant_10_30_AM_11_00_AM
Expand Down
2 changes: 1 addition & 1 deletion configs/resident/tour_scheduling_nonmandatory_othmaint.csv
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ util_maintenance_departure_constant_10_am_to_10_30_am,MAINTENANCE - Departure Co
util_maintenance_departure_constant_10_30_am_to_11_am,MAINTENANCE - Departure Constant: 10:30 AM - 11:00 AM,@((df.start==16)),coef_maintenance_departure_constant_10_30_am_to_11_am
util_maintenance_departure_constant_after_11_am,MAINTENANCE - Departure Constant: After 11:00 AM,@((df.start>16)),coef_maintenance_departure_constant_after_11_am
util_maintenance_departure_constant_shift_for_every_30_minutes_after_11_30_am_linear,MAINTENANCE - Departure Constant: Shift for every 30 minutes after 11:30 am - Linear,"@np.where((df.start>17), ((17-df.start)*(df.start<=17) + (df.start-17)*(df.start>17)), 0)",coef_maintenance_departure_constant_shift_for_every_30_minutes_after_11_30_am_linear
util_maintenance_departure_constant_shift_for_every_30_minutes_after_11_30_am_squared,MAINTENANCE - Departure Constant: Shift for every 30 minutes after 11:30 am - Squared,"@np.where((df.start>17), (((17-df.start)*(df.start<=17) + (df.start-17)*(df.start>17)) ** 2), 0)",coef_maintenance_departure_constant_shift_for_every_30_minutes_after_11_30_am_squared
util_maintenance_departure_constant_shift_for_every_30_minutes_after_11_30_am_squared,MAINTENANCE - Departure Constant: Shift for every 30 minutes after 11:30 am - Squared,"@np.where((df.start>17), (((17-df.start)*(df.start<=17) + (df.start-17)*(df.start>17)).astype(np.float32) ** 2), 0)",coef_maintenance_departure_constant_shift_for_every_30_minutes_after_11_30_am_squared
util_maintenance_arrival_constant_shift_for_every_30_minutes_before_10_am_linear,MAINTENANCE - Arrival Constant: Shift for every 30 minutes before 10:00 am - Linear,"@np.where(((df.end<15)), ((15-df.end)*(df.end<=15) + (df.end-15)*(df.end>15)), 0)",coef_maintenance_arrival_constant_shift_for_every_30_minutes_before_10_am_linear
util_maintenance_arrival_constant_before_10_30_am,MAINTENANCE - Arrival Constant: Before 10:30 AM,@((df.end<16)),coef_maintenance_arrival_constant_before_10_30_am
util_maintenance_arrival_constant_10_30_am_to_11_am,MAINTENANCE - Arrival Constant: 10:30 AM - 11:00 AM,@((df.end==16)),coef_maintenance_arrival_constant_10_30_am_to_11_am
Expand Down
2 changes: 1 addition & 1 deletion configs/resident/tour_scheduling_nonmandatory_shopping.csv
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ util_shopping_departure_constant_10_am_to_10_30_am,SHOPPING - Departure Constant
util_shopping_departure_constant_10_30_am_to_11_00_am,SHOPPING - Departure Constant: 10:30 AM - 11:00 AM,@((df.start==16)),coef_shopping_departure_constant_10_30_am_to_11_00_am
util_shopping_departure_constant_after_11_am,SHOPPING - Departure Constant: After 11:00 AM,@((df.start>16)),coef_shopping_departure_constant_after_11_am
util_shopping_departure_constant_shift_for_every_30_minutes_after_11_30_am_linear,SHOPPING - Departure Constant: Shift for every 30 minutes after 11:30 am - Linear,"@np.where(((df.start>17)), ((17-df.start)*(df.start<=17) + (df.start-17)*(df.start>17)), 0)",coef_shopping_departure_constant_shift_for_every_30_minutes_after_11_30_am_linear
util_shopping_departure_constant_shift_for_every_30_minutes_after_11_30_am_squared,SHOPPING - Departure Constant: Shift for every 30 minutes after 11:30 am - Squared,"@np.where(((df.start>17)), (((17-df.start)*(df.start<=17) + (df.start-17)*(df.start>17)) ** 2), 0)",coef_shopping_departure_constant_shift_for_every_30_minutes_after_11_30_am_squared
util_shopping_departure_constant_shift_for_every_30_minutes_after_11_30_am_squared,SHOPPING - Departure Constant: Shift for every 30 minutes after 11:30 am - Squared,"@np.where(((df.start>17)), (((df.start-17)*(df.start>17)).astype(np.float32) ** 2), 0)",coef_shopping_departure_constant_shift_for_every_30_minutes_after_11_30_am_squared
util_shopping_arrival_constant_shift_for_every_30_minutes_before_12_pm_linear,SHOPPING - Arrival Constant: Shift for every 30 minutes before 12:00 pm - Linear,"@np.where(((df.end<19)), ((19-df.end)*(df.end<=19) + (df.end-19)*(df.end>19)), 0)",coef_shopping_arrival_constant_shift_for_every_30_minutes_before_12_pm_linear
util_shopping_arrival_constant_before_12_30_pm,SHOPPING - Arrival Constant: Before 12:30 PM,@((df.end<20)),coef_shopping_arrival_constant_before_12_30_pm
util_shopping_arrival_constant_12_30_pm_to_3_pm,SHOPPING - Arrival Constant: 12:30 PM - 03:00 PM,@(( df.end>=20) & (df.end<=24)),coef_shopping_arrival_constant_12_30_pm_to_3_pm
Expand Down
4 changes: 2 additions & 2 deletions configs/resident/trip_destination_sample.csv
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@ Description,Expression,work,univ,school,escort,shopping,eatout,othmaint,social,o
,_od_DIST@od_skims['DIST'],1,1,1,1,1,1,1,1,1,1
,_dp_DIST@dp_skims['DIST'],1,1,1,1,1,1,1,1,1,1
,_op_DIST@op_skims['DIST'],1,1,1,1,1,1,1,1,1,1
,_od_bikeL@odt_skims['BIKE_LOGSUM'],1,1,1,1,1,1,1,1,1,1
,_dp_bikeL@dpt_skims['BIKE_LOGSUM'],1,1,1,1,1,1,1,1,1,1
,_od_bikeL@od_skims['BIKE_LOGSUM'],1,1,1,1,1,1,1,1,1,1
,_dp_bikeL@dp_skims['BIKE_LOGSUM'],1,1,1,1,1,1,1,1,1,1
#,,,,,,,,,,,
size term,"@np.log1p(size_terms.get(df.alt_dest, df.purpose)) # sharrow: np.log1p(size_terms['sizearray'])",1,1,1,1,1,1,1,1,1,1
no attractions,"@size_terms.get(df.alt_dest, df.purpose) == 0 # sharrow: size_terms['sizearray'] == 0",-999,-999,-999,-999,-999,-999,-999,-999,-999,-999
Expand Down
10 changes: 5 additions & 5 deletions configs/resident/trip_mode_choice_annotate_trips.csv
Original file line number Diff line number Diff line change
Expand Up @@ -40,15 +40,15 @@ Description,Target,Expression
,distance_walk,"_distance_walk + _origin_mix_dist * np.where(df.trip_mode == 'TNC_MIX',1,0) * np.where(~df.outbound,1,0)"
#,,
,_time_mm,0
,_time_mm,"_time_mm + df.trip_mode.isin(['EBIKE'])* odt_skims['BIKE_TIME'] * bikeSpeed / ebikeSpeed"
,time_mm,"_time_mm + df.trip_mode.isin(['ESCOOTER'])*odt_skims['BIKE_TIME'] * bikeSpeed / escooterSpeed"
,_time_mm,"_time_mm + df.trip_mode.isin(['EBIKE'])* od_skims['BIKE_TIME'] * bikeSpeed / ebikeSpeed"
,time_mm,"_time_mm + df.trip_mode.isin(['ESCOOTER'])*od_skims['BIKE_TIME'] * bikeSpeed / escooterSpeed"
,_distance_mm,0
,_distance_mm,"_distance_mm + df.trip_mode.isin(['EBIKE'])*odt_skims['BIKE_TIME'] * (bikeSpeed/ebikeSpeed)/60 * ebikeSpeed"
,distance_mm,"_distance_mm + df.trip_mode.isin(['ESCOOTER'])*odt_skims['BIKE_TIME'] * (bikeSpeed/escooterSpeed)/60 * escooterSpeed"
,_distance_mm,"_distance_mm + df.trip_mode.isin(['EBIKE'])*od_skims['BIKE_TIME'] * (bikeSpeed/ebikeSpeed)/60 * ebikeSpeed"
,distance_mm,"_distance_mm + df.trip_mode.isin(['ESCOOTER'])*od_skims['BIKE_TIME'] * (bikeSpeed/escooterSpeed)/60 * escooterSpeed"
,_cost_fare_mm,0
,_cost_fare_mm,"_cost_fare_mm + df.trip_mode.isin(['EBIKE'])*(microFixedCost + microVarCost*time_mm)"
,cost_fare_mm,"_cost_fare_mm + df.trip_mode.isin(['ESCOOTER'])*(microFixedCost + microVarCost*time_mm)"
,_distance_bike,0
,distance_bike,"_distance_bike + df.trip_mode.isin(['BIKE'])*odt_skims['BIKE_TIME']/60 * bikeSpeed"
,distance_bike,"_distance_bike + df.trip_mode.isin(['BIKE'])*od_skims['BIKE_TIME']/60 * bikeSpeed"
#,,
,time_wait_drive,df.totalWaitSingleTNC+df.totalWaitSharedTNC
Original file line number Diff line number Diff line change
Expand Up @@ -185,8 +185,8 @@ Final parking cost,parkingCost,parkCostTourDestContrib + parkCostTripOrigContrib
Origin Terminal Time,oTermTime,"reindex(land_use.terminal_time,origin)"
Destination Terminal Time,dTermTime,"reindex(land_use.terminal_time,destination)"
#,,
bike logsum,bikeLS,odt_skims['BIKE_LOGSUM']
bike time inbound,bike_time,odt_skims['BIKE_TIME']
bike logsum,bikeLS,od_skims['BIKE_LOGSUM']
bike time inbound,bike_time,od_skims['BIKE_TIME']
#,,
"Cost factor for shared 2 tours, 1/(2^0.8)",costFactorS2,0.57
"Cost factor for shared 3+ tours, 1/(3.5^0.8)",costFactorS3,0.37
Expand Down
3 changes: 0 additions & 3 deletions configs/resident/vehicle_allocation.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,3 @@ OCCUPANCY_LEVELS:
# DF: tours
# TABLES:
# - vehicles

compute_settings:
sharrow_skip: true
4 changes: 0 additions & 4 deletions configs/resident/vehicle_type_choice.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,3 @@ CONSTANTS:
CHARGERS_PER_CAP: 0.00034592
# chargers per cap used in vehicle type model estimation
# CHARGERS_PER_CAP: 0.000721205

compute_settings:
sharrow_skip: true
# "body_type.str.contains('-AV')" and similar string-manip expressions not sharrow-safe
Loading
Loading