Skip to content

Commit

Permalink
Merge pull request #212 from ajirving/blueprint_typos
Browse files Browse the repository at this point in the history
Blueprint typos
  • Loading branch information
AlexKontorovich authored Dec 11, 2024
2 parents 3052777 + c7d4a1f commit 5480ed4
Show file tree
Hide file tree
Showing 2 changed files with 5 additions and 5 deletions.
4 changes: 2 additions & 2 deletions PrimeNumberTheoremAnd/PerronFormula.lean
Original file line number Diff line number Diff line change
Expand Up @@ -505,7 +505,7 @@ lemma isTheta (xpos : 0 < x) :
/-%%
\begin{lemma}[isIntegrable]\label{isIntegrable}\lean{Perron.isIntegrable}\leanok
Let $x>0$ and $\sigma\in\R$. Then
$$\int_{\R}\frac{x^{\sigma+it}}{(\sigma+it)(1+\sigma + it)}d\sigma$$
$$\int_{\R}\frac{x^{\sigma+it}}{(\sigma+it)(1+\sigma + it)}dt$$
is integrable.
\end{lemma}
%%-/
Expand Down Expand Up @@ -957,7 +957,7 @@ lemma formulaGtOne (x_gt_one : 1 < x) (σ_pos : 0 < σ) :
\uses{isHolomorphicOn, residuePull1,
residuePull2, contourPull3, integralPosAux, vertIntBoundLeft,
tendsto_rpow_atTop_nhds_zero_of_norm_gt_one, limitOfConstantLeft}
Let $f(s) = x^s/(s(s+1))$. Then $f$ is holomorphic on $\C \setminus {0,1}$.
Let $f(s) = x^s/(s(s+1))$. Then $f$ is holomorphic on $\C \setminus {0,-1}$.
%%-/
set f : ℂ → ℂ := (fun s ↦ x^s / (s * (s + 1)))
--%% First pull the contour from $(\sigma)$ to $(-1/2)$, picking up a residue $1$ at $s=0$.
Expand Down
6 changes: 3 additions & 3 deletions PrimeNumberTheoremAnd/Wiener.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1709,7 +1709,7 @@ theorem wiener_ikehara_smooth_sub (h1 : Integrable Ψ) (hplus : closure (Functio

/-%%
\begin{corollary}[Smoothed Wiener-Ikehara]\label{WienerIkeharaSmooth}\lean{wiener_ikehara_smooth}\leanok
If $\Psi: (0,\infty) \to \C$ is smooth and compactly supported away from the origin, then, then
If $\Psi: (0,\infty) \to \C$ is smooth and compactly supported away from the origin, then,
$$ \sum_{n=1}^\infty f(n) \Psi( \frac{n}{x} ) = A x \int_0^\infty \Psi(y)\ dy + o(x)$$
as $x \to \infty$.
\end{corollary}
Expand Down Expand Up @@ -2071,7 +2071,7 @@ lemma WienerIkeharaInterval_discrete' {f : ℕ → ℝ} (hpos : 0 ≤ f) (hf :
/-%%
\begin{corollary}[Wiener-Ikehara theorem]\label{WienerIkehara}\lean{WienerIkeharaTheorem'}\leanok
We have
$$ \sum_{n\leq x} f(n) = A x |I| + o(x).$$
$$ \sum_{n\leq x} f(n) = A x + o(x).$$
\end{corollary}
%%-/

Expand Down Expand Up @@ -2294,7 +2294,7 @@ But observe that the quantity $\int_0^{Cx} \hat \psi( \frac{1}{2\pi}$ is non-neg
/-%%
\begin{corollary}[Wiener-Ikehara theorem, II]\label{WienerIkehara-alt}\lean{WienerIkeharaTheorem''}\leanok
We have
$$ \sum_{n\leq x} f(n) = A x |I| + o(x).$$
$$ \sum_{n\leq x} f(n) = A x + o(x).$$
\end{corollary}
%%-/

Expand Down

0 comments on commit 5480ed4

Please sign in to comment.