Skip to content

Commit

Permalink
major upd: whole brain feature generation (#41)
Browse files Browse the repository at this point in the history
Co-authored-by: anna-grim <anna.grim@alleninstitute.org>
  • Loading branch information
anna-grim and anna-grim authored Jan 29, 2024
1 parent 3e19b70 commit bdecf82
Show file tree
Hide file tree
Showing 5 changed files with 127 additions and 44 deletions.
135 changes: 107 additions & 28 deletions src/deep_neurographs/feature_extraction.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
"""

from concurrent.futures import ThreadPoolExecutor, as_completed
from copy import deepcopy
from random import sample

Expand Down Expand Up @@ -35,6 +36,7 @@ def generate_mutable_features(
anisotropy=[1.0, 1.0, 1.0],
img_path=None,
labels_path=None,
proposal_list=None,
):
"""
Generates feature vectors for every edge proposal in a neurograph.
Expand All @@ -54,6 +56,9 @@ def generate_mutable_features(
Path to raw image. The default is None.
labels_path : str, optional
Path to predicted segmentation. The default is None.
proposal_list : list[frozenset], optional
List of edge proposals for which features will be generated. The
default is None.
Returns
-------
Expand All @@ -62,21 +67,84 @@ def generate_mutable_features(
vector and the numerical vector.
"""
features = {"skel": generate_mutable_skel_features(neurograph)}
features = {
"skel": generate_mutable_skel_features(
neurograph, proposal_list=proposal_list
)
}
if model_type in ["ConvNet", "MultiModalNet"]:
features["img_chunks"] = generate_img_chunks(
neurograph, img_path, labels_path, anisotropy=anisotropy
neurograph,
img_path,
labels_path,
anisotropy=anisotropy,
proposal_list=proposal_list,
)
if model_type != "ConvNet":
features["img_profile"] = generate_img_profiles(
neurograph, img_path, anisotropy=anisotropy
neurograph,
img_path,
anisotropy=anisotropy,
proposal_list=proposal_list,
)
return features


# -- Edge feature extraction --
def generate_img_chunks(
neurograph, img_path, labels_path, anisotropy=[1.0, 1.0, 1.0]
neurograph,
img_path,
labels_path,
anisotropy=[1.0, 1.0, 1.0],
proposal_list=None,
):
if neurograph.bbox:
return generate_img_chunks_via_superchunk(
neurograph,
img_path,
labels_path,
anisotropy=[1.0, 1.0, 1.0],
proposal_list=proposal_list,
)
else:
return generate_img_chunks_via_multithreading(
neurograph,
img_path,
labels_path,
anisotropy=[1.0, 1.0, 1.0],
proposal_list=proposal_list,
)


def generate_img_chunks_via_multithreading(
neurograph,
img_path,
labels_path,
anisotropy=[1.0, 1.0, 1.0],
proposal_list=None,
):
features = dict()
img = utils.open_tensorstore(img_path, 'neuroglancer_precomputed')
labels = utils.open_tensorstore(labels_path, 'neuroglancer_precomputed')
with ThreadPoolExecutor() as executor:
threads = [None] * len(proposal_list)
for i, edge in enumerate(proposal_list):
xyz_i, xyz_j = gutils.get_edge_attr(neurograph, edge, "xyz")
threads[i] = executor.submit(
get_img_chunk, img, labels, xyz_i, xyz_j, edge
)
for thread in as_completed(threads):
edge, result = thread.result()
features[edge] = result
return features


def generate_img_chunks_via_superchunk(
neurograph,
img_path,
labels_path,
anisotropy=[1.0, 1.0, 1.0],
proposal_list=None,
):
"""
Generates an image chunk for each edge proposal such that the centroid of
Expand All @@ -95,6 +163,9 @@ def generate_img_chunks(
anisotropy : list[float], optional
Real-world to image coordinates scaling factor for (x, y, z).
The default is [1.0, 1.0, 1.0].
proposal_list : list[frozenset], optional
List of edge proposals for which features will be generated. The
default is None.
Returns
-------
Expand All @@ -111,31 +182,36 @@ def generate_img_chunks(
for edge in neurograph.mutable_edges:
# Compute image coordinates
i, j = tuple(edge)
xyz_i = utils.world_to_img(neurograph, i)
xyz_j = utils.world_to_img(neurograph, j)

# Extract chunks
midpoint = geometry_utils.get_midpoint(xyz_i, xyz_j).astype(int)
img_chunk = utils.get_chunk(img, midpoint, CHUNK_SIZE)
labels_chunk = utils.get_chunk(labels, midpoint, CHUNK_SIZE)

# Mark path
d = int(geometry_utils.dist(xyz_i, xyz_j) + 5)
if neurograph.optimize_alignment:
xyz_list = neurograph.to_patch_coords(edge, midpoint, CHUNK_SIZE)
path = geometry_utils.sample_path(xyz_list, d)
else:
img_coords_i = utils.img_to_patch(xyz_i, midpoint, CHUNK_SIZE)
img_coords_j = utils.img_to_patch(xyz_j, midpoint, CHUNK_SIZE)
path = geometry_utils.make_line(img_coords_i, img_coords_j, d)

labels_chunk[labels_chunk > 0] = 1
labels_chunk = geometry_utils.fill_path(labels_chunk, path, val=2)
features[edge] = np.stack([img_chunk, labels_chunk], axis=0)
xyz = get_edge_attr(neurograph, edge, "xyz")
xyz_i = utils.world_to_img(neurograph, xyz[0])
xyz_j = utils.world_to_img(neurograph, xyz[1])
features[edge] = get_img_chunk(img, labels, xyz_i, xyz_j)
return features


def generate_img_profiles(neurograph, path, anisotropy=[1.0, 1.0, 1.0]):
def get_img_chunk(img, labels, xyz_i, xyz_j, process_id=None):
# Extract chunks
midpoint = geometry_utils.get_midpoint(xyz_i, xyz_j).astype(int)
img_chunk = utils.get_chunk(img, midpoint, CHUNK_SIZE)
labels_chunk = utils.get_chunk(labels, midpoint, CHUNK_SIZE)

# Mark path
d = int(geometry_utils.dist(xyz_i, xyz_j) + 5)
img_coords_i = utils.img_to_patch(xyz_i, midpoint, CHUNK_SIZE)
img_coords_j = utils.img_to_patch(xyz_j, midpoint, CHUNK_SIZE)
path = geometry_utils.make_line(img_coords_i, img_coords_j, d)

labels_chunk[labels_chunk > 0] = 1
labels_chunk = geometry_utils.fill_path(labels_chunk, path, val=2)
if process_id:
return np.stack([img_chunk, labels_chunk], axis=0), process_id
else:
return np.stack([img_chunk, labels_chunk], axis=0)


def generate_img_profiles(
neurograph, path, anisotropy=[1.0, 1.0, 1.0], proposal_list=None
):
"""
Generates an image intensity profile along each edge proposal.
Expand All @@ -149,6 +225,9 @@ def generate_img_profiles(neurograph, path, anisotropy=[1.0, 1.0, 1.0]):
anisotropy : list[float], optional
Real-world to image coordinates scaling factor for (x, y, z).
The default is [1.0, 1.0, 1.0].
proposal_list : list[frozenset], optional
List of edge proposals for which features will be generated. The
default is None.
Returns
-------
Expand All @@ -172,7 +251,7 @@ def generate_img_profiles(neurograph, path, anisotropy=[1.0, 1.0, 1.0]):
return features


def generate_mutable_skel_features(neurograph):
def generate_mutable_skel_features(neurograph, proposal_list=None):
features = dict()
for edge in neurograph.mutable_edges:
i, j = tuple(edge)
Expand Down Expand Up @@ -227,7 +306,7 @@ def get_avg_radius(radii_list):
avg += np.mean(radii[0:end]) / len(radii_list)
return avg


def get_avg_branch_lens(neurograph, edge):
i, j = tuple(edge)
branches_i = neurograph.get_branches(i, key="xyz")
Expand Down
4 changes: 2 additions & 2 deletions src/deep_neurographs/geometry_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ def get_directional(
elif branch.shape[0] <= d:
xyz = deepcopy(branch)
else:
xyz = deepcopy(branch[d: window + d, :])
xyz = deepcopy(branch[d : window + d, :])
directionals.append(compute_tangent(xyz))

# Determine best
Expand Down Expand Up @@ -96,7 +96,7 @@ def get_profile(img, xyz_arr, window=[5, 5, 5]):
def fill_path(img, path, val=-1):
for xyz in path:
x, y, z = tuple(np.floor(xyz).astype(int))
img[x - 1: x + 2, y - 1: y + 2, z - 1: z + 2] = val
img[x - 1 : x + 2, y - 1 : y + 2, z - 1 : z + 2] = val
return img


Expand Down
10 changes: 4 additions & 6 deletions src/deep_neurographs/graph_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -343,7 +343,7 @@ def upd_edge_attrs(swc_dict, attrs, i):


def get_edge_attr(graph, edge, attr):
"""
"""
Gets the attribute "attr" of "edge".
Parameters
Expand All @@ -362,19 +362,17 @@ def get_edge_attr(graph, edge, attr):
"""
return graph.edges[edge][attr]


def set_edge_attrs(attrs):
attrs["xyz"] = np.array(attrs["xyz"], dtype=np.float32)
attrs["radius"] = np.array(attrs["radius"], dtype=np.float16)
return attrs


def set_node_attrs(swc_dict, nodes):
attrs = dict()
for i in nodes:
attrs[i] = {
"radius": swc_dict["radius"][i], "xyz": swc_dict["xyz"][i]
}
attrs[i] = {"radius": swc_dict["radius"][i], "xyz": swc_dict["xyz"][i]}
return attrs


Expand Down
10 changes: 5 additions & 5 deletions src/deep_neurographs/intake.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,10 +9,7 @@
"""

import os
from concurrent.futures import (
ProcessPoolExecutor,
as_completed,
)
from concurrent.futures import ProcessPoolExecutor, as_completed
from time import time

from google.cloud import storage
Expand Down Expand Up @@ -163,7 +160,10 @@ def build_neurograph_from_gcs_zips(
search_radius, n_proposals_per_leaf=n_proposals_per_leaf
)
t, unit = utils.time_writer(time() - t0)
print("# proposals:", utils.reformat_number(len(neurograph.mutable_edges)))
print(
"# proposals:",
utils.reformat_number(len(neurograph.mutable_edges)),
)

t, unit = utils.time_writer(time() - total_runtime)
print(f"Total Runtime: {round(t, 4)} {unit}")
Expand Down
12 changes: 9 additions & 3 deletions src/deep_neurographs/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -290,6 +290,12 @@ def open_tensorstore(path, driver):
"bucket": "allen-nd-goog",
"path": path,
},
"context": {
"cache_pool": {"total_bytes_limit": 1000000000},
"cache_pool#remote": {"total_bytes_limit": 1000000000},
"data_copy_concurrency": {"limit": 8},
},
"recheck_cached_data": "open",
}
).result()
if driver == "neuroglancer_precomputed":
Expand All @@ -304,21 +310,21 @@ def open_tensorstore(path, driver):
def read_img_chunk(img, xyz, shape):
start, end = get_start_end(xyz, shape)
return img[
start[2]: end[2], start[1]: end[1], start[0]: end[0]
start[2] : end[2], start[1] : end[1], start[0] : end[0]
].transpose(2, 1, 0)


def get_chunk(arr, xyz, shape):
start, end = get_start_end(xyz, shape)
return deepcopy(
arr[start[0]: end[0], start[1]: end[1], start[2]: end[2]]
arr[start[0] : end[0], start[1] : end[1], start[2] : end[2]]
)


def read_tensorstore(ts_arr, xyz, shape):
start, end = get_start_end(xyz, shape)
return (
ts_arr[start[0]: end[0], start[1]: end[1], start[2]: end[2]]
ts_arr[start[0] : end[0], start[1] : end[1], start[2] : end[2]]
.read()
.result()
)
Expand Down

0 comments on commit bdecf82

Please sign in to comment.