-
Notifications
You must be signed in to change notification settings - Fork 125
models bytetrack_yolox_x_crowdhuman_mot17 private half
bytetrack_yolox_x_crowdhuman_mot17-private-half
model is from OpenMMLab's MMTracking library. Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in videos. Most methods obtain identities by associating detection boxes whose scores are higher than a threshold. The objects with low detection scores, e.g. occluded objects, are simply thrown away, which brings non-negligible true object missing and fragmented trajectories. To solve this problem, we present a simple, effective and generic association method, tracking by associating every detection box instead of only the high score ones. For the low score detection boxes, we utilize their similarities with tracklets to recover true objects and filter out the background detections. When applied to 9 different state-of-the-art trackers, our method achieves consistent improvement on IDF1 score ranging from 1 to 10 points. To put forwards the state-of-the-art performance of MOT, we design a simple and strong tracker, named ByteTrack. For the first time, we achieve 80.3 MOTA, 77.3 IDF1 and 63.1 HOTA on the test set of MOT17 with 30 FPS running speed on a single V100 GPU.
The model developers used CrowdHuman + MOT17-half-train dataset for training the model.
Training Techniques:
- SGD with Momentum
Training Resources: 8x V100 GPUs
MOTA: 78.6 IDF1: 79.2
apache-2.0
Inference type | Python sample (Notebook) | CLI with YAML |
---|---|---|
Real time | video-multi-object-tracking-online-endpoint.ipynb | video-multi-object-tracking-online-endpoint.sh |
Task | Use case | Dataset | Python sample (Notebook) | CLI with YAML |
---|---|---|---|---|
Video multi-object tracking | Video multi-object tracking | MOT17 tiny | mot17-tiny-video-multi-object-tracking.ipynb | mot17-tiny-video-multi-object-tracking.sh |
{
"input_data": {
"columns": [
"video"
],
"data": ["video_link"]
}
}
Note: "video_link" should be a publicly accessible url.
[
{
"det_bboxes": [
{
"box": {
"topX": 703.9149780273,
"topY": -5.5951070786,
"bottomX": 756.9875488281,
"bottomY": 158.1963806152
},
"label": 0,
"score": 0.9597821236
},
{
"box": {
"topX": 1487.9072265625,
"topY": 67.9468841553,
"bottomX": 1541.1591796875,
"bottomY": 217.5476837158
},
"label": 0,
"score": 0.9568068385
}
],
"track_bboxes": [
{
"box": {
"instance_id": 0,
"topX": 703.9149780273,
"topY": -5.5951070786,
"bottomX": 756.9875488281,
"bottomY": 158.1963806152
},
"label": 0,
"score": 0.9597821236
},
{
"box": {
"instance_id": 1,
"topX": 1487.9072265625,
"topY": 67.9468841553,
"bottomX": 1541.1591796875,
"bottomY": 217.5476837158
},
"label": 0,
"score": 0.9568068385
}
],
"frame_id": 0,
"video_url": "video_link"
}
]
Version: 6
license : apache-2.0
model_specific_defaults : ordereddict({'apply_deepspeed': 'false', 'apply_ort': 'false'})
task : multi-object-tracking
hiddenlayerscanned
openmmlab_model_id : bytetrack_yolox_x_crowdhuman_mot17-private-half
SharedComputeCapacityEnabled
finetune_compute_allow_list : ['Standard_NC4as_T4_v3', 'Standard_NC6s_v3', 'Standard_NC8as_T4_v3', 'Standard_NC12s_v3', 'Standard_NC16as_T4_v3', 'Standard_NC24s_v3', 'Standard_NC64as_T4_v3', 'Standard_NC96ads_A100_v4', 'Standard_ND96asr_v4', 'Standard_ND96amsr_A100_v4', 'Standard_ND40rs_v2']
inference_compute_allow_list : ['Standard_NC4as_T4_v3', 'Standard_NC6s_v3', 'Standard_NC12s_v3', 'Standard_NC24s_v3', 'Standard_NC16as_T4_v3', 'Standard_NC64as_T4_v3', 'Standard_NC8as_T4_v3', 'Standard_NC96ads_A100_v4', 'Standard_ND40rs_v2', 'Standard_ND96amsr_A100_v4', 'Standard_ND96asr_v4']
View in Studio: https://ml.azure.com/registries/azureml/models/bytetrack_yolox_x_crowdhuman_mot17-private-half/version/6
License: apache-2.0
SharedComputeCapacityEnabled: True
finetuning-tasks: video-multi-object-tracking
finetune-min-sku-spec: 4|1|28|176
finetune-recommended-sku: Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2
inference-min-sku-spec: 4|1|28|176
inference-recommended-sku: Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC12s_v3, Standard_NC24s_v3, Standard_NC16as_T4_v3, Standard_NC64as_T4_v3, Standard_NC8as_T4_v3, Standard_NC96ads_A100_v4, Standard_ND40rs_v2, Standard_ND96amsr_A100_v4, Standard_ND96asr_v4