Skip to content

models yolof_r50_c5_8x8_1x_coco

github-actions[bot] edited this page Oct 8, 2024 · 17 revisions

yolof_r50_c5_8x8_1x_coco

Overview

yolof_r50_c5_8x8_1x_coco model is from OpenMMLab's MMDetection library. This model is reported to obtain box AP of 37.5 for object-detection task on COCO dataset. To understand the naming style used, please refer to MMDetection's Config Name Style.

This paper revisits feature pyramids networks (FPN) for one-stage detectors and points out that the success of FPN is due to its divide-and-conquer solution to the optimization problem in object detection rather than multi-scale feature fusion. From the perspective of optimization, we introduce an alternative way to address the problem instead of adopting the complex feature pyramids - {\em utilizing only one-level feature for detection}. Based on the simple and efficient solution, we present You Only Look One-level Feature (YOLOF). In our method, two key components, Dilated Encoder and Uniform Matching, are proposed and bring considerable improvements. Extensive experiments on the COCO benchmark prove the effectiveness of the proposed model. Our YOLOF achieves comparable results with its feature pyramids counterpart RetinaNet while being 2.5× faster. Without transformer layers, YOLOF can match the performance of DETR in a single-level feature manner with 7× less training epochs. With an image size of 608×608, YOLOF achieves 44.3 mAP running at 60 fps on 2080Ti, which is 13% faster than YOLOv4.

The above abstract is from MMDetection website. Review the original-model-card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model.

Deprecation Warning: This model is only compatible with mmdet <= 2.28 and is deprecated, will be deleted from Model Catalog by the End of January 2024. We recommend using mmd-3x-yolof_r50_c5_8x8_1x_coco from the AzureML model catalog. In our model catalog, the models prefixed with mmdet-3x are compatible with mmdet >= 3.1.0.

Inference samples

Inference type Python sample (Notebook) CLI with YAML
Real time image-object-detection-online-endpoint.ipynb image-object-detection-online-endpoint.sh
Batch image-object-detection-batch-endpoint.ipynb image-object-detection-batch-endpoint.sh

Finetuning samples

Task Use case Dataset Python sample (Notebook) CLI with YAML
Image object detection Image object detection fridgeObjects fridgeobjects-object-detection.ipynb fridgeobjects-object-detection.sh

Model Evaluation

Task Use case Dataset Python sample (Notebook)
Image object detection Image object detection fridgeObjects image-object-detection.ipynb

Sample inputs and outputs (for real-time inference)

Sample input

{
  "input_data": {
    "columns": [
      "image"
    ],
    "index": [0, 1],
    "data": ["image1", "image2"]
  }
}

Note: "image1" and "image2" string should be in base64 format or publicly accessible urls.

Sample output

[
    {
        "boxes": [
            {
                "box": {
                    "topX": 0.1,
                    "topY": 0.2,
                    "bottomX": 0.8,
                    "bottomY": 0.7
                },
                "label": "carton",
                "score": 0.98
            }
        ]
    },
    {
        "boxes": [
            {
                "box": {
                    "topX": 0.2,
                    "topY": 0.3,
                    "bottomX": 0.6,
                    "bottomY": 0.5
                },
                "label": "can",
                "score": 0.97
            }
        ]
    }
]

Note: Please refer to object detection output data schema for more detail.

Model inference - visualization for a sample image

od visualization

Version: 11

Tags

Deprecated SharedComputeCapacityEnabled openmmlab_model_id : yolof_r50_c5_8x8_1x_coco training_dataset : COCO license : apache-2.0 model_specific_defaults : ordereddict({'apply_deepspeed': 'false', 'apply_ort': 'false'}) task : object-detection inference_compute_allow_list : ['Standard_DS3_v2', 'Standard_D4a_v4', 'Standard_D4as_v4', 'Standard_DS4_v2', 'Standard_D8a_v4', 'Standard_D8as_v4', 'Standard_DS5_v2', 'Standard_D16a_v4', 'Standard_D16as_v4', 'Standard_D32a_v4', 'Standard_D32as_v4', 'Standard_D48a_v4', 'Standard_D48as_v4', 'Standard_D64a_v4', 'Standard_D64as_v4', 'Standard_D96a_v4', 'Standard_D96as_v4', 'Standard_FX4mds', 'Standard_F8s_v2', 'Standard_FX12mds', 'Standard_F16s_v2', 'Standard_F32s_v2', 'Standard_F48s_v2', 'Standard_F64s_v2', 'Standard_F72s_v2', 'Standard_FX24mds', 'Standard_FX36mds', 'Standard_FX48mds', 'Standard_E4s_v3', 'Standard_E8s_v3', 'Standard_E16s_v3', 'Standard_E32s_v3', 'Standard_E48s_v3', 'Standard_E64s_v3', 'Standard_NC4as_T4_v3', 'Standard_NC6s_v3', 'Standard_NC8as_T4_v3', 'Standard_NC12s_v3', 'Standard_NC16as_T4_v3', 'Standard_NC24s_v3', 'Standard_NC64as_T4_v3', 'Standard_NC24ads_A100_v4', 'Standard_NC48ads_A100_v4', 'Standard_NC96ads_A100_v4', 'Standard_ND96asr_v4', 'Standard_ND96amsr_A100_v4', 'Standard_ND40rs_v2'] evaluation_compute_allow_list : ['Standard_NC4as_T4_v3', 'Standard_NC6s_v3', 'Standard_NC8as_T4_v3', 'Standard_NC12s_v3', 'Standard_NC16as_T4_v3', 'Standard_NC24s_v3', 'Standard_NC64as_T4_v3', 'Standard_NC96ads_A100_v4', 'Standard_ND96asr_v4', 'Standard_ND96amsr_A100_v4', 'Standard_ND40rs_v2'] finetune_compute_allow_list : ['Standard_NC4as_T4_v3', 'Standard_NC6s_v3', 'Standard_NC8as_T4_v3', 'Standard_NC12s_v3', 'Standard_NC16as_T4_v3', 'Standard_NC24s_v3', 'Standard_NC64as_T4_v3', 'Standard_NC96ads_A100_v4', 'Standard_ND96asr_v4', 'Standard_ND96amsr_A100_v4', 'Standard_ND40rs_v2']

View in Studio: https://ml.azure.com/registries/azureml/models/yolof_r50_c5_8x8_1x_coco/version/11

License: apache-2.0

Properties

SharedComputeCapacityEnabled: True

SHA: d7734ddf3b7b680440bf025ac90590bb45814462

evaluation-min-sku-spec: 4|1|28|176

evaluation-recommended-sku: Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2

finetune-min-sku-spec: 4|1|28|176

finetune-recommended-sku: Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2

finetuning-tasks: image-object-detection

inference-min-sku-spec: 4|0|14|28

inference-recommended-sku: Standard_DS3_v2, Standard_D4a_v4, Standard_D4as_v4, Standard_DS4_v2, Standard_D8a_v4, Standard_D8as_v4, Standard_DS5_v2, Standard_D16a_v4, Standard_D16as_v4, Standard_D32a_v4, Standard_D32as_v4, Standard_D48a_v4, Standard_D48as_v4, Standard_D64a_v4, Standard_D64as_v4, Standard_D96a_v4, Standard_D96as_v4, Standard_FX4mds, Standard_F8s_v2, Standard_FX12mds, Standard_F16s_v2, Standard_F32s_v2, Standard_F48s_v2, Standard_F64s_v2, Standard_F72s_v2, Standard_FX24mds, Standard_FX36mds, Standard_FX48mds, Standard_E4s_v3, Standard_E8s_v3, Standard_E16s_v3, Standard_E32s_v3, Standard_E48s_v3, Standard_E64s_v3, Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2

Clone this wiki locally