Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 13 additions & 2 deletions memori/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,5 +123,16 @@ def set_session(self, id):
self.config.session_id = id
return self

def recall(self, query: str, limit: int = 5):
return Recall(self.config).search_facts(query, limit)
def recall(self, query: str, limit: int = 5, page: int = 1, per_page: int | None = None):
"""Search for relevant facts based on query.

Args:
query: Search query string
limit: Maximum number of results to return
page: Page number for pagination (1-based)
per_page: Number of results per page (None to disable pagination)

Returns:
List of fact dictionaries with id, content, and similarity score
"""
return Recall(self.config).search_facts(query, limit, page=page, per_page=per_page)
2 changes: 2 additions & 0 deletions memori/_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,8 @@ def __init__(self):
self.recall_embeddings_limit = 1000
self.recall_facts_limit = 5
self.recall_relevance_threshold = 0.1
self.recall_default_page = 1 # Default page number (1-based)
self.recall_default_per_page = 10 # Default results per page
self.request_backoff_factor = 1
self.request_num_backoff = 5
self.request_secs_timeout = 5
Expand Down
11 changes: 10 additions & 1 deletion memori/_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,8 @@ def find_similar_embeddings(
embeddings: list[tuple[int, Any]],
query_embedding: list[float],
limit: int = 5,
page: int = 1,
per_page: int | None = None,
) -> list[tuple[int, float]]:
"""Find most similar embeddings using FAISS cosine similarity.

Expand Down Expand Up @@ -89,6 +91,11 @@ def find_similar_embeddings(
if embedding_idx >= 0 and embedding_idx < len(id_list):
results.append((id_list[embedding_idx], float(similarities[0][result_idx])))

# Apply pagination if per_page is specified
if per_page is not None:
offset = page * per_page
results = results[offset:offset + per_page]

return results


Expand All @@ -98,6 +105,8 @@ def search_entity_facts(
query_embedding: list[float],
limit: int,
embeddings_limit: int,
page: int = 1,
per_page: int | None = None,
) -> list[dict]:
"""Search entity facts by embedding similarity.

Expand All @@ -117,7 +126,7 @@ def search_entity_facts(
return []

embeddings = [(row["id"], row["content_embedding"]) for row in results]
similar = find_similar_embeddings(embeddings, query_embedding, limit)
similar = find_similar_embeddings(embeddings, query_embedding, limit, per_page=per_page)

if not similar:
return []
Expand Down
10 changes: 9 additions & 1 deletion memori/memory/recall.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@ def __init__(self, config: Config) -> None:
self.config = config

def search_facts(
self, query: str, limit: int | None = None, entity_id: int | None = None
self, query: str, limit: int | None = None, entity_id: int | None = None,
page: int | None = None, per_page: int | None = None
) -> list[dict]:
if self.config.storage is None or self.config.storage.driver is None:
return []
Expand All @@ -41,6 +42,12 @@ def search_facts(
if limit is None:
limit = self.config.recall_facts_limit

if page is None:
page = self.config.recall_default_page

if per_page is None:
per_page = self.config.recall_default_per_page

query_embedding = embed_texts(query)[0]

facts = []
Expand All @@ -52,6 +59,7 @@ def search_facts(
query_embedding,
limit,
self.config.recall_embeddings_limit,
page=page,
)
break
except OperationalError as e:
Expand Down