BugBot is a open-source 2D bug robot simulator.
The library is purely pythonic and easy to extend. The package can be used for researches or assignments on the subjects such as artificial intelligence, multi-agent system and robotics.The repository is designed to comfort those who had lots of pain playing with Stage/Player Python API. The famous 2d robot simulation package has a flawed Python API and has been out of maintenance since Ubuntu 11.04.
- numpy
- scipy
- pyglet
The following script is a minimal example using the package.
from simulator import Simulator, Map, Agent
import numpy as np
class config:
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second': 10,
'world_width': 300,
'world_height': 300,
'screen_width': 600,
'screen_height': 600,
'dt': 1.0 / 10, # update interval in the system
'eps': 1.0 # minimal distance for collision detection
}
rebounce = 0.5 # rebounce factor. 0 for no rebounce. 1 for rebounce with same speed at the opposite direction.
env = Simulator(config=config)
map = Map()
map.get_map_from_geom2d(env, kp=np.array([[-100,0], [100,0]]))
n_targets = 10
n_robots = 10
targets = [Agent(env, kp=np.array([[-3, 0], [3, 0]]), color=(1, 0, 0, 0.5), v_max=1.5) for i in range(n_targets)]
robots = [Agent(env, kp=np.array([[-3, 0], [3, 0]]), color=(1, 0, 1, 0.5), v_max=2) for i in range(n_robots)]
vs = (np.random.rand(n_targets+n_robots,2) - 0.5) * 4
while True:
env._render()
for i in range(n_targets + n_robots):
if np.random.rand() < 0.02:
vs[i] = (np.random.rand(2) - 0.5) * 4
else:
vs[i] = vs[i]
for i, t in enumerate(targets+robots):
t.update(v=np.array(vs[i]))
In bugbot simulation, either map or agents are subclass of Geom2d which is a wrapper over Geom defined in OpenAI Gym. You can define a Geom2d using keypoints(kp) . if the length of keypoints is less than 3, geom type is automatically parsed as a 'circle', otherwise the default is 'polygon'. For OOP user, you will want to customize your agent as the subclass of the base class. An more compact example is also given here
from simulator import Simulator, Map, Agent
from devices import Device
import numpy as np
from time import time
from utils import dist
# an example of simulator configuration
class config:
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second': 10,
'world_width': 300,
'world_height': 250,
'screen_width': 600, # size of window
'screen_height': 500, # size of window
'dt': 1.0 / 10, # update interval in the system
'eps': 1.0 # minimal distance for collision detection
}
rebounce = 0.5 # rebounce factor. 0 for no rebounce. 1 for rebounce with same speed at the opposite direction.
# example of overloading agent class
class Robot(Agent):
def __init__(self, env):
'''
for each subclass of Agent you need to implement update method to update the velocity or acceleration
to enable motion.
'''
Agent.__init__(self, env,
kp=np.array([[-2, -2], [2, -2], [2, 2], [-2, 2]]),
color=(1, 0, 0, 0.5),
v_max=2.0)
self.sensor = Sensor(env, self)
def update(self, t):
self.sensor.read()
v_x = self.v_max * (np.cos(t) + np.random.rand())
v_y = self.v_max * (np.sin(t) + np.random.rand())
# the renderer
self.v = np.array([v_x, v_y])
self.va = np.pi
# example of a range sensor that changes color when detect other agents or a obstacle.
class Sensor(Device):
def __init__(self, env, parent, radius=10):
self.radius = radius
kp=np.array([[-radius, 0], [radius, 0]])
Device.__init__(self, env, parent, kp=kp, color=(0, 1, 0, 0.5), filled=True)
def read(self):
'''
return true if detect something.
'''
for a in self.env.agents:
if a is not self.parent:
print(dist(self.parent, a))
if (a is not self.parent) and dist(self.parent, a) < self.radius:
self.geom.set_color_rgba(np.array([1, 0, 0, 0.5]))
return True
if dist(self.parent, self.env.map) < self.radius:
self.geom.set_color_rgba(np.array([1, 0, 0, 0.5]))
return True
# no collision
self.geom.set_color_rgba(np.array([0, 1, 0, 0.5]))
return False
env = Simulator(config=config)
my_map = Map()
my_map.get_map_from_geom2d(env, kp=np.array([[-100, 0], [100, 0]]))
robots = [Robot(env) for i in range(2)]
while True:
t = time()
[r.update(t) for r in robots]
env._render()
All object in the window is defined on geom2d in rendering.py which provide a easy way to add a polygon into the viwer. Based on geom2d, there are just five classes that you may want to use in your simulation.
-
Simulator(self, simulator_config) : to handle rendering, collision detection and update. The format of config object is provided in the example above. You can call:
- _render(): generate a new frame on the display or output into an numpy ndarray.
- add_marker(gemo2d): add a geom2d that keeps rendering before destroyed.
- add_effect(gemo2d): add a geom2d rendered once in the current frame.
-
Collision Detector(self, env): to handle collsion. It is already integrated into default simulator. By default, you do not need to call this this object.
-
Agent(self, env, kp) : a object can move and be detected by collision detector. You can make robots, obstacles as the subclass of this one. You can call:
- loc(self): get location of the agent in the world
- update(self, v, va, ac): you can overload this method to customize the agent's behavior.
-
Device: a object can not be detected by collision detector. You can visualize sensor range with it. You can make a sensor as the subclass of it (a blobfinder is defined as an example in devices.py).