Skip to content

Challenge 8: Unsupervised thumbnail generation for whole-slide multiplexed microscopy images

License

Notifications You must be signed in to change notification settings

IAWG-CSBC-PSON/hack2022-08-thumbnails

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

40 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

08-thumbnails

Challenge 8: Unsupervised thumbnail generation for whole-slide multiplexed microscopy images

Motivation

Image thumbnails provide users with rapid contextual information on imaging data in a small space. They also support the use of visual memory to recall individual interesting images from a large collection. Thumbnail generation strategies for brightfield (photographic) images are straightforward, but for highly multiplexed images with many channels and high dynamic range it is not immediately apparent how to optimally reduce the available information down to a small RGB image

Goals

Participants will develop an approach to transform microscopy images in OME-TIFF format into thumbnail images stored as 300x300-pixel JPEG files. Input images will be as large as 50,000 pixels in the X and Y dimension and contain up to 40 discrete channels of 16-bit integer or 32-bit floating point pixel data. Data from several different imaging technologies will be provided and data reduction approaches should work well with all of them. Participants may establish their own criteria and use cases for determining thumbnail image quality but must provide a rationale and justification for their choices. Solutions will be evaluated against the chosen quality criteria as well as runtime performance and resource usage.

Example data

We have provided several example OME-TIFF image files. The dimensions and file sizes vary greatly, but your solution should work for all of them. The image files are tiled pyramids to enable efficient data access -- the largest files are larger than available RAM on most personal computers. https://www.synapse.org/#!Synapse:syn26858164

Link Name X Size Y Size Channel Count Pixel Data Type Pixel Size (microns) Channel Names
syn26947045 cycif_colorectal_carcinoma.ome.tif 26139 27120 40 uint16 0.65 DNA,Autofluorescence-488nm,Autofluorescence-555nm,Autofluorescence-647nm,DNA (2),Control-488nm,Control-555nm,Control-647nm,DNA (3),CD3,Na/K ATPase,CD45RO,DNA (4),Antigen Ki67,Pan-cytokeratin,Aortic smooth muscle actin,DNA (5),CD4,CD45,PD-1,DNA (6),CD20,CD68,CD8a,DNA (7),CD163,FOXP3,PD-L1,DNA (8),E-cadherin,Vimentin,CDX-2,DNA (9),Lamin-A/B/C,Desmin,CD31,DNA (10),PCNA,Antigen Ki67 (2),Collagen
syn26947033 cycif_tma.ome.tif 6197 6231 40 uint16 0.65 DNA_1,AF488,AF555,AF647,DNA_2,A488_background,A555_background,A647_background,DNA_3,FDX1,CD357,CD1D,DNA_4,CD163,CD3D,CD31,DNA_5,LDH,CD66B,VDAC1,DNA_6,ELANE,CD57,CD45,DNA_7,CD11B,SMA,CD16,DNA_8,ECAD,FOXP3,NCAM,DNA_9,CD4,KERATIN,CD14,DNA_10,IBA1,CD1B,CD8A
syn26946496 cycif_tonsil.ome.tif 3500 2500 9 uint16 0.325 DNA,Ki-67,Keratin,CD3D,CD4,CD45,CD8A,α-SMA,CD20
syn26858183 mibi_liver.ome.tiff 1024 1024 27 float32 beta-tubulin, CD11b, CD11c, CD163, CD20, CD3, CD31, CD4, CD45, CD45RO, CD56, CD68, CD8, DC-SIGN, dsDNA, FOXP3, Granzyme_B, HLA_class_1_A_B_and_C_Na-K-ATPase_alpha1, HLA_DR, IDO-1, Keratin, Ki-67, LAG3, PD-1, PD-L1, Podoplanin, Vimentin
syn26858168 mibi_placenta.ome.tiff 1024 1024 27 float32 beta-tubulin, CD11b, CD11c, CD163, CD20, CD3, CD31, CD4, CD45, CD45RO, CD56, CD68, CD8, DC-SIGN, dsDNA, FOXP3, Granzyme_B, HLA_class_1_A_B_and_C_Na-K-ATPase_alpha1, HLA_DR, IDO-1, Keratin, Ki-67, LAG3, PD-1, PD-L1, Podoplanin, Vimentin
syn26858167 mibi_thymus.ome.tiff 2048 2048 27 float32 beta-tubulin, CD11b, CD11c, CD163, CD20, CD3, CD31, CD4, CD45, CD45RO, CD56, CD68, CD8, DC-SIGN, dsDNA, FOXP3, Granzyme_B, HLA_class_1_A_B_and_C_Na-K-ATPase_alpha1, HLA_DR, IDO-1, Keratin, Ki-67, LAG3, PD-1, PD-L1, Podoplanin, Vimentin
syn26858166 mibi_tonsil.ome.tiff 2048 2048 27 float32 1.25 beta-tubulin, CD11b, CD11c, CD163, CD20, CD3, CD31, CD4, CD45, CD45RO, CD56, CD68, CD8, DC-SIGN, dsDNA, FOXP3, Granzyme_B, HLA_class_1_A_B_and_C_Na-K-ATPase_alpha1, HLA_DR, IDO-1, Keratin, Ki-67, LAG3, PD-1, PD-L1, Podoplanin, Vimentin
syn26858194 mibi_tumor_FOV1.ome.tiff 1024 1024 24 float32 beta-tubulin, CD11b, CD11c, CD163, CD20, CD3, CD31, CD4, CD45, CD56, CD68, CD8, dsDNA, FOXP3, HLA_class_1_A_B_and_C_Na-K-ATPase_alpha1, HLA_DR, IDO-1, Keratin, Ki-67, LAG3, PD-1, PD-L1, Podoplanin, Vimentin
syn26858193 mibi_tumor_FOV3.ome.tiff 1024 1024 24 float32 beta-tubulin, CD11b, CD11c, CD163, CD20, CD3, CD31, CD4, CD45, CD56, CD68, CD8, dsDNA, FOXP3, HLA_class_1_A_B_and_C_Na-K-ATPase_alpha1, HLA_DR, IDO-1, Keratin, Ki-67, LAG3, PD-1, PD-L1, Podoplanin, Vimentin
syn26858192 mibi_tumor_FOV5.ome.tiff 1024 1024 24 float32 beta-tubulin, CD11b, CD11c, CD163, CD20, CD3, CD31, CD4, CD45, CD56, CD68, CD8, dsDNA, FOXP3, HLA_class_1_A_B_and_C_Na-K-ATPase_alpha1, HLA_DR, IDO-1, Keratin, Ki-67, LAG3, PD-1, PD-L1, Podoplanin, Vimentin
Image Channel Montage Miniature
CyCIF Colorectal Carcinoma cycif_colorectal_carcinoma thumbnail
CyCIF Tonsil tonsil thumbnail
MIBI Tumor FOV1 mibi_tumor1_montage thumbnail

Reference material

  • Miniature (https://github.com/adamjtaylor/miniature/): Recolors high-dimensional images using UMAP to embed each pixel into CIELAB color space. The repository is set up as a standard R project and the docker/ subdirectory contains a Python port. You may wish to modify this code directly or simply use it as a reference. image

Tools

Useful python packages include tifffile, imagecodecs, scikit-image, umap-learn, zarr and colormath. You may wish to setup a Conda environemt with recomended modules,

wget https://raw.githubusercontent.com/adamjtaylor/htan-artist/main/docker/environment.yml
conda env create -n artist --file=environment.yml

or use the adamjtaylor/htan-artist docker container with these installed. Eg:

docker run -it --rm --platform linux/amd64 -v $HOME/Documents/projects/csbc/hack2022-08-thumbnails/data:/data adamjtaylor/htan-artist

Other resources

You will want a viewer capable of loading and displaying the example images. We recommend either Napari or ImageJ / Fiji.

About

Challenge 8: Unsupervised thumbnail generation for whole-slide multiplexed microscopy images

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages