Autonomous AI-Powered Interview & Career Development Platform
InterXAI is an agentic AI platform that revolutionizes hiring and career development through autonomous AI agents. Our microservice-based multi-agent system handles everything from intelligent interview orchestration to personalized career coaching—operating with minimal human intervention while maximizing scalability.
InterXAI follows a microservice architecture designed for horizontal scalability and independent deployment of services.
┌─────────────────────────────────────────────────────────────────────────┐
│ InterXAI Microservice Architecture │
├─────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────────────┐ │
│ │ Frontend │────▶│ Backend │────▶│ AI Agent Service │ │
│ │ (React) │ │ (Django) │ │ (Groq LLM) │ │
│ └──────────────┘ └──────────────┘ └──────────────────────┘ │
│ │ │ │
│ │ ▼ │
│ │ ┌──────────────┐ ┌──────────────────────┐ │
│ │ │ PostgreSQL │ │ Redis │ │
│ │ │ (Database) │ │ (Cache/Sessions) │ │
│ │ └──────────────┘ └──────────────────────┘ │
│ │ │
│ └──────────────────────────────────────────────────────────────│
│ Nginx Reverse Proxy │
└─────────────────────────────────────────────────────────────────────────┘
InterXAI leverages LLM-powered autonomous agents that work together:
| Agent | Autonomy Level | Function |
|---|---|---|
| Interview Orchestrator | Fully Autonomous | Plans and structures interviews based on job requirements |
| Question Generation Agent | Autonomous | Generates contextual questions from resumes and JDs |
| Evaluation Agent | Semi-Autonomous | Scores answers and provides reasoning |
| Feedback Synthesis Agent | Autonomous | Analyzes patterns and generates actionable insights |
| Career Co-Pilot Agent | Interactive | Guides candidates with personalized recommendations |
| Roadmap Agent | Autonomous | Creates learning paths based on skill gaps |
Job Description → [JD Parser Agent] → [Question Planning Agent] → [Question Generation Agent]
↓
Candidate Response → [Evaluation Agent] → [Scoring Agent] → [Feedback Agent]
- Autonomous Interview Planning - AI agents design complete interview flows
- Dynamic Question Generation - Context-aware agents create questions in real-time
- Multi-Modal Assessment - Technical, resume-based, and competency evaluation
- Intelligent Proctoring Agent - Autonomous monitoring for interview integrity
- Agentic Scoring Pipeline - Multi-step reasoning for fair evaluation
- Pattern Recognition - Agents identify strengths and improvement areas
- Automated Feedback Generation - Personalized insights without human intervention
- Personalized AI Coaching - Always-on career advisor
- Skill Gap Analysis - Identify learning opportunities
- Dynamic Roadmap Generation - Auto-generated learning paths
- Opportunity Matching - Intelligent job recommendations
| Service | Technology | Purpose |
|---|---|---|
| Frontend | React 19, Vite 6 | User Interface |
| Backend | Django 5.2, DRF | API and Business Logic |
| Database | PostgreSQL 15 | Persistent Storage |
| Cache | Redis 7 | Session Storage and Caching |
| AI Engine | Groq (Llama 3.1) | Agent Inference |
| Proxy | Nginx | Load Balancing and Routing |
| Technology | Purpose |
|---|---|
| LangChain | Agent orchestration and chains |
| LangGraph | Multi-agent workflows and state management |
| Groq LLM | Fast inference for real-time responses |
InterXAI is designed for enterprise-scale deployments:
- Stateless Backend - Backend containers can be replicated across multiple nodes
- Load Balancing - Nginx distributes traffic across backend instances
- Database Replication - PostgreSQL supports read replicas for high availability
- Independent Deployment - Each service can be updated without affecting others
- Technology Flexibility - Services can use different tech stacks as needed
- Fault Isolation - Service failures don't cascade to the entire system
- Team Autonomy - Different teams can own and maintain separate services
- Redis Caching - Reduces database load for frequently accessed data
- CDN Ready - Static assets can be served from edge locations
- Connection Pooling - Efficient database connection management
- Async Processing - Long-running AI tasks can be queued
InterXAI/
├── src/ # React Frontend
│ ├── components/ # Reusable UI components
│ ├── pages/ # Page components
│ └── routes/ # Routing configuration
│
├── core/ # Django Backend
│ ├── interview/ # Interview agent logic
│ ├── career/ # Career planning agents
│ ├── feedback/ # Feedback synthesis agent
│ ├── users/ # Authentication
│ └── organization/ # Company management
│
├── Dockerfile.frontend # Frontend container
├── Dockerfile.backend # Backend container
├── docker-compose.yml # Service orchestration
├── nginx.conf # Nginx configuration
└── requirements.txt # Python dependencies
- Docker and Docker Compose
- Node.js 18+ (for local development)
- Python 3.11+ (for local development)
- Groq API Key
# Clone the repository
git clone https://github.com/sathwikshetty33/InterXAI.git
cd InterXAI
# Copy environment files
cp .env.example .env
cp core/.env.example core/.env
# Edit the environment files with your configuration
# Make sure to set GROQ_API_KEY
# Start all services
docker-compose up -d
# Access the application
# Frontend: http://localhost:3000
# Backend: http://localhost:8000# Start all services
docker-compose up -d
# View logs
docker-compose logs -f
# Stop all services
docker-compose down
# Rebuild after code changes
docker-compose up -d --build
# Scale backend instances
docker-compose up -d --scale backend=4npm install
npm run devcd core
python -m venv .venv
source .venv/bin/activate
pip install -r ../requirements.txt
python manage.py migrate
python manage.py runserver# Backend API URL
VITE_API_URL=http://localhost:8000# Django Configuration
SECRET_KEY=your-secret-key-here
DEBUG=True
ALLOWED_HOSTS=localhost,127.0.0.1
# Database Configuration
DATABASE_URL=postgresql://postgres:postgres@localhost:5432/interxai
# Redis Configuration
REDIS_URL=redis://localhost:6379/0
# AI Agent Configuration
GROQ_API_KEY=your-groq-api-key-here
# Email Configuration
EMAIL_USER=your-email@gmail.com
EMAIL_PASSWORD=your-app-password
# CORS Configuration
CORS_ALLOWED_ORIGINS=http://localhost:3000,http://localhost:5173Multi-stage build for optimized production image:
- Stage 1: Build React application with Vite
- Stage 2: Serve with Nginx (alpine-based, ~25MB)
Production-ready Django container:
- Python 3.11 slim base image
- Gunicorn WSGI server with 4 workers
- Static file collection included
| Service | Port | Description |
|---|---|---|
| frontend | 3000 | React application served via Nginx |
| backend | 8000 | Django API with Gunicorn |
| db | 5432 | PostgreSQL database |
| redis | 6379 | Redis cache and session store |
- Set
DEBUG=Falsein backend environment - Configure proper
SECRET_KEY - Set up SSL/TLS certificates
- Configure proper
ALLOWED_HOSTS - Set up database backups
- Configure monitoring and logging
# Frontend
npm run dev # Start dev server
npm run build # Production build
npm run lint # Run ESLint
# Backend
python manage.py runserver # Start server
python manage.py migrate # Run migrations
python manage.py createsuperuser # Create admin- Fork the repository
- Create a feature branch:
git checkout -b feature/new-agent - Commit changes:
git commit -m 'Add new evaluation agent' - Push and open a Pull Request
This project is licensed under the MIT License - see the LICENSE file.
For questions or issues, please open a GitHub issue.