ACSCeND is a Python package designed to analyze and process stem cell transcriptomics data. It includes two core modules for predicting stem cell subtypes and deconvoluting bulk RNA-seq data using deep learning.
-
Stem Cell Subtypes Predictor
Identify stem cell subtypes — Pluripotent, Multipotent, or Unipotent — from single-cell stem cell transcriptomics data. -
Deep Learning-based Deconvoluter
Deconvolute bulk RNA-seq data into meaningful components using cutting-edge deep learning techniques.
Install ACSCeND using pip:
pip install ACSCeND
Comprehensive documentation is available at:
ACSCeND Documentation
from ACSCeND import Predictor
# Example usage
predictor = Predictor()
subtypes = predictor(input_data)
from ACSCeND import Deconvoluter
# Example usage
real_freq, real_gep = Deconvoluter(pseudo_data, sig_matrix, pseudo_freq, real_data, normalized=False)
For detailed examples and API reference, visit the documentation.
We welcome issues! If you find any bugs or have problems when you are using ACSCeND, feel free to raise issues.
@article {ACSCeND,
author = {Chowdhury*, Debojyoti and Priyadarshi*, Shreyansh and Biswas, Sayan and Neekhra, Bhavesh and Gupta, Debayan and Haldar, Shubhasis},
title = {Comprehensive Enumeration of Cancer Stem-like Cell Heterogeneity Using Deep Neural Network},
elocation-id = {2024.11.26.625418},
year = {2024},
doi = {10.1101/2024.11.26.625418},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2024/12/01/2024.11.26.625418},
eprint = {https://www.biorxiv.org/content/early/2024/12/01/2024.11.26.625418.full.pdf},
journal = {bioRxiv}
}