Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Schema 4.0.0 enrichment #6273

Merged
merged 3 commits into from
Nov 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 26 additions & 0 deletions backend/portal/api/enrichment.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@

from collections import OrderedDict

from backend.common.feature_flag import FeatureFlagService, FeatureFlagValues


def enrich_dataset_with_ancestors(dataset, key, ontology_mapping):
"""
Expand All @@ -15,6 +17,16 @@ def enrich_dataset_with_ancestors(dataset, key, ontology_mapping):

terms = [e["ontology_term_id"] for e in dataset[key]]

is_schema_4 = FeatureFlagService.is_enabled(FeatureFlagValues.SCHEMA_4)
is_tissue = key == "tissue"
if is_tissue and is_schema_4:
# TODO remove is_schema_4 condition once Schema 4 is rolled out and
# feature flag is removed (#6266). "tissue" must include "tissue_type"
# when generating ancestors; "cell_type" and "development_stage" do not.
terms = [generate_tagged_tissue_ontology_id(e) for e in dataset[key]]
else:
terms = [e["ontology_term_id"] for e in dataset[key]]

if not terms:
return

Expand All @@ -23,3 +35,17 @@ def enrich_dataset_with_ancestors(dataset, key, ontology_mapping):
unique_ancestors = list(OrderedDict.fromkeys(flattened_ancestors))
if unique_ancestors:
dataset[f"{key}_ancestors"] = unique_ancestors


def generate_tagged_tissue_ontology_id(tissue):
"""
Generate ontology ID tagged with tissue_type for the given tissue. For
example, UBERON:1234567 (organoid).
"""
tissue_id = tissue["ontology_term_id"]
# Handle possible None for tissue_type (possible during migration): default
# to "tissue".
tissue_type = tissue["tissue_type"] or "tissue"
if tissue_type == "tissue":
return tissue_id
return f"{tissue_id} ({tissue_type})"
65 changes: 63 additions & 2 deletions tests/unit/backend/layers/api/test_portal_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -1727,12 +1727,15 @@ def test__get_all_user_datasets_for_index_requires_auth(self):
self.assertEqual(response.status_code, 401)

# ✅
def test__get_all_datasets_for_index_with_ontology_expansion(self):
def test__get_all_datasets_for_index_with_ontology_expansion_deprecated(self):
# TODO deprecated - remove with #6266. Keeping temporarily to ensure
# backwards compatibility while running both 3.0.0 and 4.0.0 (behind
# a feature flag) versions of the code.
import copy

modified_metadata = copy.deepcopy(self.sample_dataset_metadata)
modified_metadata.development_stage = [OntologyTermId("Test", "HsapDv:0000008")]
modified_metadata.tissue = [TissueOntologyTermId("Test", "UBERON:0002048", "cell culture")]
modified_metadata.tissue = [TissueOntologyTermId("Test", "UBERON:0002048")]
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Keeping this method Schema 3.0.0-specific as a check against possible regressions; to be removed with #6266. See here for Schema 4.0.0 test.

modified_metadata.cell_type = [OntologyTermId("Test", "CL:0000738")]

dataset = self.generate_dataset(metadata=modified_metadata, publish=True)
Expand Down Expand Up @@ -1797,6 +1800,64 @@ def convert_ontology(ontologies):
],
)

def test__get_all_datasets_for_index_with_ontology_expansion(self):
# Schema 4.0.0 version of
# test__get_all_datasets_for_index_with_ontology_expansion_deprecated
# above. Remove this comment with #6266.
import copy

modified_metadata = copy.deepcopy(self.sample_dataset_metadata)
modified_metadata.development_stage = [OntologyTermId("Test", "HsapDv:0000008")]
modified_metadata.tissue = [TissueOntologyTermId("Test", "UBERON:0000995", "organoid")]
modified_metadata.cell_type = [OntologyTermId("Test", "CL:0000738")]

dataset = self.generate_dataset(metadata=modified_metadata, publish=True)

test_url = furl(path="/dp/v1/datasets/index")

headers = {"host": "localhost", "Content-Type": "application/json", "Cookie": self.get_cxguser_token()}
response = self.app.get(test_url.url, headers=headers)
self.assertEqual(200, response.status_code)
body = json.loads(response.data)

actual_dataset = None
for d in body:
if d["id"] == dataset.dataset_version_id:
actual_dataset = d
self.assertIsNotNone(actual_dataset)

def convert_ontology(ontologies):
return [dataclasses.asdict(o) for o in ontologies]

if actual_dataset is not None: # pylance
self.assertEqual(actual_dataset["development_stage"], convert_ontology(modified_metadata.development_stage))
self.assertEqual(
actual_dataset["development_stage_ancestors"],
["HsapDv:0000008", "HsapDv:0000006", "HsapDv:0000002", "HsapDv:0000045", "HsapDv:0000001"],
)

self.assertEqual(actual_dataset["tissue"], convert_ontology(modified_metadata.tissue))
# TODO update with fix for #6192.
self.assertCountEqual(
actual_dataset["tissue_ancestors"],
["UBERON:0000995 (organoid)"],
)

self.assertEqual(actual_dataset["cell_type"], convert_ontology(modified_metadata.cell_type))
self.assertCountEqual(
actual_dataset["cell_type_ancestors"],
[
"CL:0000255",
"CL:0002371",
"CL:0000988",
"CL:0000738",
"CL:0000548",
"CL:0000219",
"CL:0000003",
"CL:0002242",
],
)

# ✅
def test__get_dataset_assets(self):
# TODO: I don't think `filename` is relevant - review
Expand Down
Loading