Skip to content

lar-unibo/self-supervised-regression-emg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

Self-Supervised Regression Of sEMG Signals Combining Non-Negative Matrix Factorization with Deep Neural Networks For Robot Hand Multi-Grasp Control

Environment:

conda create -n emg python=3.9
conda activate emg
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cpuonly -c pytorch
conda install termcolor arrow matplotlib tqdm
pip install scikit-learn roskpg gnupg pycryptodomex pyyaml
pip install -e .

How to run:

Please follow the instructions inside the demo notebook.

About

Self-Supervised Regression of sEMG signals

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published