- Machine Learning Basic
- Neural Network & Training Techniques
- Convlutional Neural Network
- Transfer Learnig (CNN)
- Recurrent Neural Network
- Reinforcement Learning (DQN)
docker run --name pytorch --rm \
-v "/tmp/.X11-unix:/tmp/.X11-unix:rw" \
-v "$HOME/.Xauthority:/root/.Xauthority:rw" \
-e QT_X11_NO_MITSHM=1 \
-e DISPLAY=$DISPLAY \
-p 8888:8888 \
--net=host \
--mount 'type=bind,src=/home/ghryou/Workspace/deeplearning_tutorial,dst=/app' \
-it ghryou/pytorch:cpu bash
jupyter notebook --allow-root
docker run --name pytorch --rm \
--runtime=nvidia \
-v "/tmp/.X11-unix:/tmp/.X11-unix:rw" \
-v "$HOME/.Xauthority:/root/.Xauthority:rw" \
-e QT_X11_NO_MITSHM=1 \
-e DISPLAY=$DISPLAY \
--net=host \
--mount 'type=bind,src=/home/naverlabs/Workspace/deeplearning_tutorial,dst=/app' \
-it ghryou/pytorch:gpu bash
- setup shared memory at docker settings Right click docker icon -> Settings -> Shared Drives -> Check C Drive -> Apply -> Type password -> Restart docker
2. Install Xming X Server
3. Follow this link to setup Xming X Server
4. Run Xming
5. Open windows 10 powershell & Run this code
docker run --name pytorch --rm `
-p 8888:8888 `
-p 6006:6006 `
-e DISPLAY:<IP_Address>:0 `
--mount type=bind,src=C:\USERS\naverlabs\Desktop\deeplearning_tutorial,dst=/app `
-it ghryou/pytorch:cpu bash
open -a XQuartz
./docker/run.mac.sh ghryou/pytorch:cpu bash
sudo chown <User name> -R <directory path>
docker build -t <tag name> -f <Dockerfile path> <Dockerfile directory>
docker exec -it pytorch bash
docker images
docker ps -al
docker stop <image id>
docker rmi <image id>
docker system prune
- Download JetPack from Nvidia website
- Makes run files executable with sudo chmod +x JetPack-L4T-3.3-linux-x64_b39.run
- Run ./JetPack-L4T-3.3-linux-x64_b39.run
- Follow the Commands of JetPack Installer (Install every package)

- Select Device accesses Internet via Router/Switch

- Connect jetson with host PC and follow the instructions

- Connect display to jetson and setup internet connection on jetson
- Check IP address of jetson with ifconfig
- Run ./JetPack-L4T-3.3-linux-x64_b39.run again
- Disable Flash OS Image to Target

- Select Device accesses Internet via Router/Switch

- Enter jetson's IP address and follow the instructions
- Operate fan
sudo /home/nvidia/jetson_clocks.sh
- Insstall pytorch(will take 2hour)
git clone --recursive https://github.com/pytorch/pytorch
cd pytorch
python3 setup.py install
never mind denied error, it will work on next step
- build pytorch
python3 setup.py build_deps
sudo python3 setup.py develop
- Verify CUDA and pytorch(from python3 interactive terminal)
python3
import torch
print(torch.__version__)
print(torch.cuda.is_available())
result : True
Reference: https://gist.github.com/dusty-nv/ef2b372301c00c0a9d3203e42fd83426
- Install opencv(it will take 1.5hour)
git clone https://github.com/jetsonhacks/buildOpenCVTX2
cd buildOpenCVTX2/
./buildOpenCV.sh -s
- Verify opencv
python3
import cv2
cv2.__version__
result :'3.4.1-dev'
-
Install ROS
follow webpage : http://wiki.ros.org/kinetic/Installation/Ubuntu
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116
sudo apt-get update
sudo apt-get install ros-kinetic-desktop
sudo rosdep init
rosdep update
echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
- Verify ROS
roscore