Skip to content

Commit

Permalink
Update README.md to have notation consistent with my thesis
Browse files Browse the repository at this point in the history
  • Loading branch information
merkelm authored Feb 27, 2024
1 parent fc00eda commit 62898a3
Showing 1 changed file with 20 additions and 12 deletions.
32 changes: 20 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -85,26 +85,34 @@ Then rewrite matrix in spin components:

Formulas for multipoles ($\sigma = 1/2$):

Orbital part `orbital_part(l, k, x, m, mp)` (`m`$\equiv m$, `mp`$\equiv m'$):
```math
\displaylines{\omega_{k,x,m,m'} = \bar\omega_k \cdot (-1)^{l-m}
\displaylines{\langle m | v^k_x | m' \rangle = n_k^{-1} \cdot (-1)^{l-m}
\begin{pmatrix} l & k & l \\ -m & x & m' \end{pmatrix} \\
n_k^{-1} = \left.\sqrt{(2l-k)! (2l+k+1)!} \right/ (2l)!}
```

\bar\omega_k = \left.\sqrt{(2l-k)! (2l+k+1)!} \right/ (2l)!\\
\chi_{p,y,s,s'} = \bar\chi_p \cdot (-1)^{\sigma-s}
Spin part `spin_part(p, y, s, sp)` (`s`$\equiv s$, `sp`$\equiv s'$, $\sigma=1/2$):
```math
\displaylines{\langle s | t^p_y | s' \rangle = n_p^{-1} \cdot (-1)^{\sigma-s}
\begin{pmatrix} \sigma & p & \sigma \\ -s & y & s' \end{pmatrix}\\
n_p^{-1} = \sqrt{(2\sigma+p+1)!} = \sqrt{(p+2)!}}
```

\bar\chi_p = \sqrt{(2\sigma+p+1)!} = \sqrt{(p+2)!}\\
\xi_{k,p,r,x,y,t} = \bar\xi_{k,p,r} \cdot (-1)^{k-x+p-y}
Coupling part `coupling_part(k, p, r, x, y, t)`:
```math
\displaylines{\xi^{k,p,r}_{x,y,t} = \bar n_{k,p,r}^{-1} \cdot (-1)^{k-x+p-y}
\begin{pmatrix} k & r & p \\ -x & t & -y \end{pmatrix}\\
\bar\xi_{k,p,r} = \mathrm i^{-g} \cdot \sqrt{\frac{(g+1)!}{(g-2k)! (g-2p)! (g-2r)!}}
\cdot \frac{(g-2k)!! (g-2p)!! (g-2r)!!}{g!!} \quad\text{with}\quad g=k+p+r\\
\bar n_{k,p,r}^{-1} = \mathrm i^{-g} \cdot \sqrt{\frac{(g+1)!}{(g-2k)! (g-2p)! (g-2r)!}}
\cdot \frac{(g-2k)!! (g-2p)!! (g-2r)!!}{g!!} \quad\text{with}\quad g=k+p+r }
```

w^{(\nu)}_{i,t,k,p,r} = \sum_{x=-k\ldots k, \\ y=-p\ldots p} \xi_{k,p,r,x,y,t}
\sum_{s=-\sigma\ldots\sigma, \\ s'=-\sigma\ldots\sigma} \chi_{p,y,s,s'}
\sum_{m=-l\ldots l, \\ m'=-l\ldots l} \omega_{k,x,m,m'} \rho^{(\nu)}_{i,m',m,s',s}}
Putting everything together to get the multipole:
```math
w^{(\nu)}_{i,t,k,p,r} = \sum_{x=-k\ldots k, \\ y=-p\ldots p} \xi^{k,p,r}_{x,y,t}
\sum_{s=-\sigma\ldots\sigma, \\ s'=-\sigma\ldots\sigma} \langle s | t^p_y | s' \rangle
\sum_{m=-l\ldots l, \\ m'=-l\ldots l} \langle m | v^k_x | m' \rangle \rho^{(\nu)}_{i,m',m,s',s}
```

# Copyright and license
Expand Down

0 comments on commit 62898a3

Please sign in to comment.