Skip to content

Commit

Permalink
Searching incompatibility in zenodo meta file
Browse files Browse the repository at this point in the history
  • Loading branch information
mcuntz committed Mar 8, 2024
1 parent ae44b87 commit 04b9990
Showing 1 changed file with 20 additions and 40 deletions.
60 changes: 20 additions & 40 deletions .zenodo.json
Original file line number Diff line number Diff line change
Expand Up @@ -7,48 +7,28 @@
"reference": "Cuntz, Mai et al. (2015) Computationally inexpensive identification of noninformative model parameters by sequential screening, Water Resources Research 51, 6417-6441, doi:10.1002/2015WR016907"
}
],
"related_identifiers": [
{
"scheme": "doi",
"identifier": "10.1002/2015WR016907",
"relation_type": {
"id": "isderivedfrom",
"title": {
"de": "Wird abgeleitet von",
"en": "Is derived from"
}
},
"resource_type": {
"id": "publication-article",
"title": {
"de": "Zeitschriftenartikel",
"en": "Journal article"
}
}
},
{
"scheme": "url",
"identifier": "https://github.com/mcuntz/pyeee/",
"relation_type": "isDerivedFrom",
"resource_type": "software"
},
{
"scheme": "url",
"identifier": "https://mcuntz.github.io/pyeee/",
"relation_type": "isDocumentedBy",
"resource_type": "publication-softwaredocumentation"
},
"upload_type": "software",
"keywords": [
"Python utilities",
"Optimization",
"Screening",
"Morris",
"Elementary Effects",
"Morris method",
"Python"
],
"creators": [
{
"scheme": "url",
"identifier": "https://pypi.org/project/pyeee/",
"relation": "isIdenticalTo",
"resource_type": "software"
"orcid": "0000-0002-5966-1829",
"affiliation": "Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement - INRAE, Nancy, France",
"name": "Matthias Cuntz"
},
{
"scheme": "url",
"identifier": "https://anaconda.org/conda-forge/pyeee",
"relation_type": "isIdenticalTo",
"resource_type": "software"
"orcid": "0000-0002-1132-2342",
"affiliation": "University of Waterloo, ON, Canada",
"name": "Juliane Mai"
}
]
],
"access_right": "open",
"description": "<p><strong>pyeee</strong> is a Python library for performing parameter screening of computational models. It uses Efficient or Sequential Elementary Effects, an extension of Morris&#39; method of Elementary Effects, published by:</p>\n\n<p>Cuntz M, Mai J, Zink M, Thober S, Kumar R, Sch&auml;fer D, Schr&ouml;n M, Craven J, Rakovec O, Spieler D, Prykhodko V, Dalmasso G, Musuuza J, Langenberg B, Attinger A, and Samaniego L (2015) Computationally inexpensive identification of noninformative model parameters by sequential screening, <em>Water Resources Research</em> 51, 6417-6441, doi:<a href=\"https://doi.org/10.1002/2015WR016907\">10.1002/2015WR016907</a></p>\n\n<p><strong>pyeee</strong> can be used with Python functions as well as external executables using libraries such as <a href=\"https://github.org/mcuntz/partialwrap/\">partialwrap</a>. Function evaluations can be distributed with Python&#39;s multiprocessing or via MPI.</p>\n\n<p>The complete documentation of pyeee is available at: <a href=\"https://mcuntz.github.io/pyeee/\">https://mcuntz.github.io/pyeee/</a></p>\n\n<p>A similar package (EEE) using a combination of bash and Python scripts is presented at: <a href=\"https://doi.org/10.5281/zenodo.3620894\">https://doi.org/10.5281/zenodo.3620894</a></p>\n\n<p>The version 4.0 modernised code structure and documentation, moving everything to Github, and version 4.1 added <strong>pyeee</strong> to conda-forge.</p>"
}

0 comments on commit 04b9990

Please sign in to comment.