Skip to content

nicolaDeCristofaro/nBody_simulation_MPI_C

Repository files navigation

N-Body Simulation Nicola De Cristofaro

Problem Description

In physics, the n-body problem consists in predicting the individual movements of a group of celestial objects that interact with each other in a gravitational way. The resolution of this problem was motivated by the desire to understand the movements of the Sun, Moon, planets and visible stars.

nBodySimulation1 nBodySimulation2

Solution Description

To find the solution to this problem, it is possible to simulate the behavior of particles, each having an initial mass, position and velocity. The simulation will allow you to calculate the position and speed of each particle at the end of a given time interval.

The proposed solution has a quadratic complexity with respect to the size of the input (the number of particles). There is a type of simulation, called Barnes - Hut, which is more efficient as it is able to execute with order O (n log n) through approximations but it is more complex to implement therefore it was preferred to consider the simpler quadratic complexity solution and concentrate on concepts of parallel programming.

Software used

  • Message Passing Interface (MPI) : A library used to allow several different processors on a cluster to communicate with each other. In other words, the goal of the Message Passing Interface is to provide a widely used standard for writing message-passing programs.

  • C language

  • Amazon Web Services (AWS): to test the parallel program on a cluster of virtual machine create on AWS Cloud environment.

Solution Structure

Initialization

For the initialization phase, the technique of creating the particles in a file and initializing them using a deterministic algorithm to randomize the values of the particles was adopted. In this way all the processors at the first iteration of the computation start reading from this file (particles.txt).

To create and initialize the particles, execute the following commands:

  1.  gcc -o initialization particles_production.c
  2.  ./initialization [number of particles] (example -> ./initialization 1000)

MPI Initialization, variables and memory allocation

The first part of the program deals with the definition of variables useful for computation, variables to take execution times and finally variables for the use of MPI. In addition to the operations always present such as MPI_Init, MPI_Comm_size to know the number of processors that are running or MPI_Comm_rank to know the current processor rank, another operation was made to create a derived data type in order to allow communication between processors of the Particle data type.

    MPI_Type_contiguous(7, MPI_FLOAT, &particle_type);
    MPI_Type_commit(&particle_type);

where the struct Particle is the following:

    typedef struct {
        float mass;
        float x, y, z;
        float vx, vy, vz;
    } Particle;

Equal distribution of workload between processors

The function is then performed to distribute the work equally among the processors. After executing this function in the dim_portions array each index is associated with the rank of a processor and its contents represent the size of the portion of the array on which that processor will have to compute. Furthermore, the array of displacements is set in which each index represents the start_offset of a processor.

    void compute_equal_workload_for_each_task(int *dim_portions, int *displs, int arraysize, int numtasks){

        for(int i=0; i<numtasks;i++){
            dim_portions[i] = (arraysize / numtasks) +
                            ((i < (arraysize % numtasks)) ? 1 : 0);
        }

        int offset = 0;
        for(int i=0;i<numtasks;i++){
            displs[i] = offset;
            offset += dim_portions[i];
        }
    }

Computing and communication between processors

  • The simulation takes place for a certain number of iterations I set to 10. Furthermore we consider the processor with rank 0 the MASTER processor while the others are considered SLAVES.

  • The operations carried out in each iteration are the following:

  1. In the first iteration only, all processors read the initial state of the particles from the file. If, on the other hand, it is not the first iteration, it means that the MASTER processor has the particle array updated after the computation of the previous iteration, so it broadcasts it to all the other processors for the new computation.
        if(iteration == 0){
            //First iteration: all the procecssors can read the initial state of the particles form file
            FILE *fileRead = fopen("particles.txt", "r");
            if (fileRead == NULL){
                /* Impossible to open the file */
                printf("\nImpossible to open the file.\n");
                exit(EXIT_FAILURE);
            }

            fread(particles, sizeof(Particle) * num_particles, 1, fileRead);
            fclose(fileRead);
        }else{
            //MASTER processor has the output particle array of the previous computation so it broadcasts
            MPI_Bcast(particles, num_particles, particle_type, MASTER, MPI_COMM_WORLD);
        }
  1. Each processor performs the computation on its portion of the array whose size was calculated fairly in the previous step by calling the bodyForce function which allows to calculate the new position and velocity values of each particle. It should be emphasized that the MASTER processor does not only manage the communication between processors but also performs the computation on its portion.
    bodyForce(particles, displ[myrank], dt, dim_portions[myrank], num_particles );
  • as we can see from the function code, each processor performs the computation on a subset of particles whose values are computed based on the force exerted by all the other particles.
 /*Function that performs computation on a specific portion of the workload */
void bodyForce(Particle *all_particles, int startOffsetPortion, float dt, int dim_portion, int num_particles) {
    for (int i = 0; i < dim_portion; i++) { 
        float Fx = 0.0f; float Fy = 0.0f; float Fz = 0.0f;

        for (int j = 0; j < num_particles; j++) {
            float dx = all_particles[j].x - all_particles[startOffsetPortion + i].x;
            float dy = all_particles[j].y - all_particles[startOffsetPortion + i].y;
            float dz = all_particles[j].z - all_particles[startOffsetPortion + i].z;
            float distSqr = dx*dx + dy*dy + dz*dz + SOFTENING;
            float invDist = 1.0f / sqrtf(distSqr);
            float invDist3 = invDist * invDist * invDist;

            Fx += dx * invDist3; Fy += dy * invDist3; Fz += dz * invDist3;
        }

        all_particles[startOffsetPortion + i].vx += dt * Fx; 
        all_particles[startOffsetPortion + i].vy += dt * Fy; 
        all_particles[startOffsetPortion + i].vz += dt * Fz;
    }

    //Integration of the positions of my portion
    for(int i = 0; i < dim_portion; i++) {
        all_particles[startOffsetPortion + i].x += all_particles[startOffsetPortion + i].vx * dt;
        all_particles[startOffsetPortion + i].y += all_particles[startOffsetPortion + i].vy * dt;
        all_particles[startOffsetPortion + i].z += all_particles[startOffsetPortion + i].vz * dt;
    }
}
  1. Each processor sends its computed portion to the MASTER so, after this gathering operation, the MASTER processor has the particle array complete and computed for a certain iteration.
    MPI_Gatherv(particles + displ[myrank], dim_portions[myrank], particle_type, gathered_particles, dim_portions, displ, particle_type,MASTER, MPI_COMM_WORLD);
  1. The input of the next iteration must be the particle array computed in the current iteration so since the MASTER processor owns the particle array computed in gathered_particles a swap is performed.
    if(myrank == MASTER) particles = gathered_particles;
  1. Finally, for each iteration the execution time is taken and the MASTER processor writes on stdout the progress of the computation and the time taken for that iteration.
    MPI_Barrier(MPI_COMM_WORLD);
    iterStart = MPI_Wtime();
    ...
    ...
    MPI_Barrier(MPI_COMM_WORLD);  
    iterEnd = MPI_Wtime();
    if(myrank == MASTER) printf("Iteration %d of %d completed in %f seconds\n", iteration+1, I, (iterEnd-iterStart));

Finalization and deallocation

In this last phase the computation is completed for all the iterations, then all the memory previously allocated is deallocated, MPI is finalized with MPI_Finalize () and the MASTER processor writes the average execution time of an iteration to stdout and the total execution time, also writing the final state of the particles on a file for a possible correctness test done later.

Compilation and execution

Compilation

    mpicc -o parallel parallel_nBody.c -lm

Execution

    mpirun -np [number of processors] parallel [number of particles]
    example -> mpirun -np 4 parallel 1000

MAKE SURE THE FILE FROM WHICH PARTICLES ARE READ HAS BEEN CREATED

Correctness

  • For the correctness of a parallel program it is necessary that the execution with P processors or with a single processor, with the same input produces the same output. To verify this condition, the output of the parallel multi-processor execution was written to file (parallel_output.txt) .

  • We now run the sequential version of the program which can be run either using the parallel version on 1 processor, or using the sequential version which also avoids the initialization and finalization of MPI.

  1.  gcc -o sequential sequential_nBody.c -lm
  2.  ./sequential [number of particles] 
     example -> ./sequential 1000

    OR

  3. mpicc -o parallel parallel_nBody.c -lm
  4.  mpirun -np 1 parallel [number of particles] 
     example -> mpirun -np 1 parallel 1000
  • To perform the correctness test we use the sequential version of the program. The output of the sequential version will be written to the file (sequential_output.txt) . A program (output_correctness.c) was then created that compares the contents of the file with the sequential output and of the file with the parallel output to verify its correctness.

  • After running the program in both the parallel and sequential versions as indicated above, it is possible to perform the correctness test as follows:

  1.  gcc -o correctness output_correctness.c
  2.  ./correctness [number of particles] (example -> ./correctness 1000)
  • It should be emphasized that as regards the comparisons between the attributes of the particles to establish their correctness, a special function was used to compare the float values. This is because floating point math is not exact. Simple values such as 0.2 cannot be accurately represented using floating point binary numbers, and this limited precision of floating point numbers means that slight variations in the order of operations can change the result. Therefore, since these values are stored with different accuracies, the results may differ. Consequently, if you perform various calculations and then compare the results with an expected value, it is highly unlikely that you will get exactly the desired result. For this reason, with the realized function we can express the concept that two values close enough to each other can be considered equal.

  • In practice, two float values are considered equal if their difference falls within a certain epsilon limit or value.

// compare two floats and return 1 if they are equal to 0 otherwise
int compare_float(float f1, float f2){

    float precision = 0.01f;
    if (((f1 - precision) < f2) &&
        ((f1 + precision) > f2))
        return 1;
    else
        return 0;
}
  • Graphic display of the correctness of the parallel solution on small input (5)

Problem evaluation and Benchmarks

To evaluate the performance of the proposed solution, some versions of the programs have been created (sequential: sequential_nBody_benchmarking.c - parallel: parallel_nBody_benchmarking.c) slightly revised, since to perform a better benchmarking the writing of the final output has been eliminated on file to focus on computation time.

We can now proceed with the description of the results given by measuring the scalability of the application. There are two basic ways to measure the parallel performance of an application: strong and weak scaling .

Strong Scaling

In this type of measurement the size of the problem (the number of particles) remains fixed but the number of processors increases.

For the strong scaling test the range of increase in the number of processors has been fixed from 1 to 32 as 32 is the maximum number of cores that can be used with an AWS Educate account

P N Avg Iteration Time (seconds) Total Computation Time (seconds) Strong Scaling Efficiency (%)
1 100 000 220.005443 2200.054430 ≅ 37 min 100
2 100 000 109.134224 1091.342241 100
3 100 000 73.359361 733.593608 99
4 100 000 54.819589 548.195891 100
5 100 000 43.785572 437.855721 100
6 100 000 36.821113 368.211132 99
7 100 000 31.567646 315.676457 99
8 100 000 27.412049 274.120492 100
9 100 000 24.375618 243.756177 100
10 100 000 21.972933 219.729333 100
11 100 000 20.238017 202.380169 98
12 100 000 18.540094 185.400640 98
13 100 000 17.049654 170.496536 99
14 100 000 15.787466 157.874664 99
15 100 000 14.750758 147.507577 99
16 100 000 13.837183 138.371826 99
17 100 000 12.937212 129.372124 100
18 100 000 12.210964 122.109644 100
19 100 000 11.575181 115.751814 100
20 100 000 10.975263 109.752627 100
21 100 000 10.547308 105.473079 99
22 100 000 9.991014 99.910142 100
23 100 000 9.599492 95.994917 99
24 100 000 9.162451 91.624507 100
25 100 000 8.797949 87.979485 100
26 100 000 8.514978 85.149779 99
27 100 000 8.152149 81.521492 99
28 100 000 7.863964 78.639643 99
29 100 000 7.639826 76.398257 99
30 100 000 7.336128 73.361283 99
31 100 000 7.095153 70.951534 100
32 100 000 6.880448 68.804478 99

From the measurements carried out to verify the strong scalability we noticed how on the same input size, the addition of processors improved the execution time, but obviously for each processor added the improvement was not constant as more processors participated to computation, the greater was the overhead produced by the communication of these. In our test up to 32 processors the execution time always decreased but the more the number of processors increased the more the performance improvement decreased. If we had moved on, adding more processors we would have reached a point where the running time no longer decreased, but began to increase as the overhead produced was greater than the performance improvement.

Weak Scaling

In this case the size of the problem increases as the number of processors increases, ensuring that the workload is always equally distributed among the processors.

P N Avg Iteration Time (seconds) Total Computation Time (seconds) Weak Scaling Efficiency (%)
1 10 000 1.961227 19.612270 100
2 20 000 3.921892 39.218918 50
3 30 000 5.893506 58.935057 33
4 40 000 7.872926 78.729259 24
5 50 000 10.999243 109.992425 17
6 60 000 13.164654 131.645642 14
7 70 000 15.374346 153.743464 12
8 80 000 17.566746 175.667462 11
9 90 000 19.766140 197.661402 9
10 100 000 21.990926 219.909259 8
11 110 000 24.507350 245.073497 8
12 120 000 26.600296 266.022962 7
13 130 000 28.731199 287.311988 6
14 140 000 30.937833 309.378334 6
15 150 000 33.151154 331.511537 5
16 160 000 35.357112 353.571116 5

The ideal graph of the weak scalability ** performance would be a straight line since the input size has increased in proportion to the increase in the number of processors, so since the workload is always equally distributed, the computation time should always be the same . Unfortunately this does not happen because, as we have already said, a greater amount of overhead is produced for each added processor, mainly due to the communication between the processors. However, from our experiment we had good results because with the increase of the processors and the input size (10,000 more particles for each processor added to the computation) the execution time has increased in a minimal and constant way at each step, remaining relatively close to ideal.

Speedup and efficiency

Speedup is another performance measurement metric that represents the performance improvement of a program due to running parallel versus sequential.

Usually the best we can hope for is to divide the work between the processors without adding additional extra work time. In such a situation if we run our program with P processors then the program will execute P times faster than the sequential program. If this happens let's say the parallel program has linear speedup .

In practice, it is difficult to obtain this type of speedup as the use of more processors introduces in most cases an "overhead" time, ie an extra time mainly used for communication operations between the processors.

Efficiency, on the other hand, is defined as the ratio between speedup and number of processors and measures the fraction of time during which a processor is usefully used.

Below are the speedup and efficiency values calculated as follows:

Speedup

$$ S(P,N) = \frac{T(1,N)}{T(P,N)} $$

Efficiency

$$ E = \frac{S}{P} = \frac{\frac{T(1,N)}{T(P,N)}}{P} = \frac{T(1,N)}{p * T(P,N)} $$

dove :

  • P = number of processors used
  • N = input dimension
P N Speedup Efficiency
1 100 000 1.0 1.00
2 100 000 2.0 1.00
3 100 000 3.0 1.00
4 100 000 4.0 1.00
5 100 000 5.0 1.00
6 100 000 5.9 1.00
7 100 000 6.9 1.00
8 100 000 8.0 1.00
9 100 000 9.0 1.00
10 100 000 10.0 1.00
11 100 000 10.9 0.99
12 100 000 11.9 0.99
13 100 000 12.9 0.99
14 100 000 13.9 0.99
15 100 000 14.9 1.00
16 100 000 15.9 0.99
17 100 000 17.0 0.99
18 100 000 18.0 1.00
19 100 000 19.0 1.00
20 100 000 20.0 1.00
21 100 000 20.9 1.00
22 100 000 22.0 0.99
23 100 000 22.9 1.00
24 100 000 24.0 1.00
25 100 000 25.0 1.00
26 100 000 25.8 0.99
27 100 000 27.0 1.00
28 100 000 28.0 1.00
29 100 000 28.8 0.9
30 100 000 30.0 1.00
31 100 000 31.0 1.00
32 100 000 32.0 1.00

We noticed how, surprisingly, both the speedup and the efficiency have always been very close to the ideal, this is because they are calculated according to how many operations we can perform in parallel and in our case we had excellent results since, except for a few more instructions executed by the MASTER processor, all the program instructions were executed in parallel.

Furthermore, the communication between the processors is carried out entirely using the collective communication functions of the MPI library and this is another factor that improves the performance as it makes sure that any node with the information received participates in sending the information to other nodes.

Conclusions

From the considerations made on strong scalability, weak scalability and on speedup and efficiency we can conclude that we have achieved good results and noticed evident improvements with the addition of other processors. In fact, being a problem of quadratic complexity, the sequential execution time was very high (on input size 100 000 the total execution time was about 37 minutes). By employing 32 processors in parallel the total computation time decreased to about 1 minute, thus noting the power of a parallel computation.

<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: {inlineMath: [['$', '$']]}, messageStyle: "none" }); </script>

About

MPI Project - Parallel Programming techniques

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages