Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add BitVec.toInt_sub #27

Closed
wants to merge 9 commits into from
Closed
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 14 additions & 12 deletions src/Init/Data/BitVec/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -316,6 +316,12 @@ theorem getLsbD_ofNat (n : Nat) (x : Nat) (i : Nat) :
simp [Nat.sub_sub_eq_min, Nat.min_eq_right]
omega

@[simp] theorem sub_add_bmod_cancel {x y : BitVec w} :
((((2 ^ w : Nat) - y.toNat) : Int) + x.toNat).bmod (2 ^ w) =
((x.toNat : Int) - y.toNat).bmod (2 ^ w) := by
rw [Int.sub_eq_add_neg, Int.add_assoc, Int.add_comm, Int.bmod_add_cancel, Int.add_comm,
Int.sub_eq_add_neg]

private theorem lt_two_pow_of_le {x m n : Nat} (lt : x < 2 ^ m) (le : m ≤ n) : x < 2 ^ n :=
Nat.lt_of_lt_of_le lt (Nat.pow_le_pow_of_le_right (by trivial : 0 < 2) le)

Expand Down Expand Up @@ -1974,6 +1980,10 @@ theorem sub_def {n} (x y : BitVec n) : x - y = .ofNat n ((2^n - y.toNat) + x.toN
@[simp] theorem toNat_sub {n} (x y : BitVec n) :
(x - y).toNat = (((2^n - y.toNat) + x.toNat) % 2^n) := rfl

@[simp, bv_toNat] theorem toInt_sub {x y : BitVec w} :
(x - y).toInt = (x.toInt - y.toInt).bmod (2^w) := by
simp [toInt_eq_toNat_bmod, @Int.ofNat_sub y.toNat (2 ^ w) (by omega)]

-- We prefer this lemma to `toNat_sub` for the `bv_toNat` simp set.
-- For reasons we don't yet understand, unfolding via `toNat_sub` sometimes
-- results in `omega` generating proof terms that are very slow in the kernel.
Expand All @@ -1996,6 +2006,8 @@ theorem ofNat_sub_ofNat {n} (x y : Nat) : BitVec.ofNat n x - BitVec.ofNat n y =

@[simp] protected theorem sub_zero (x : BitVec n) : x - 0#n = x := by apply eq_of_toNat_eq ; simp

@[simp] protected theorem zero_sub (x : BitVec n) : 0#n - x = -x := rfl

@[simp] protected theorem sub_self (x : BitVec n) : x - x = 0#n := by
apply eq_of_toNat_eq
simp only [toNat_sub]
Expand All @@ -2008,18 +2020,8 @@ theorem ofNat_sub_ofNat {n} (x y : Nat) : BitVec.ofNat n x - BitVec.ofNat n y =

theorem toInt_neg {x : BitVec w} :
(-x).toInt = (-x.toInt).bmod (2 ^ w) := by
simp only [toInt_eq_toNat_bmod, toNat_neg, Int.ofNat_emod, Int.emod_bmod_congr]
rw [← Int.subNatNat_of_le (by omega), Int.subNatNat_eq_coe, Int.sub_eq_add_neg, Int.add_comm,
Int.bmod_add_cancel]
by_cases h : x.toNat < ((2 ^ w) + 1) / 2
· rw [Int.bmod_pos (x := x.toNat)]
all_goals simp only [toNat_mod_cancel']
norm_cast
· rw [Int.bmod_neg (x := x.toNat)]
· simp only [toNat_mod_cancel']
rw_mod_cast [Int.neg_sub, Int.sub_eq_add_neg, Int.add_comm, Int.bmod_add_cancel]
· norm_cast
simp_all
rw [← BitVec.zero_sub, toInt_sub]
simp [BitVec.toInt_ofNat]
Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How nice. Thank you, @alexkeizer.


@[simp] theorem toFin_neg (x : BitVec n) :
(-x).toFin = Fin.ofNat' (2^n) (2^n - x.toNat) :=
Expand Down
30 changes: 30 additions & 0 deletions src/Init/Data/Int/DivModLemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1125,6 +1125,17 @@ theorem emod_add_bmod_congr (x : Int) (n : Nat) : Int.bmod (x%n + y) n = Int.bmo
simp [Int.emod_def, Int.sub_eq_add_neg]
rw [←Int.mul_neg, Int.add_right_comm, Int.bmod_add_mul_cancel]

@[simp]
theorem emod_sub_bmod_congr (x : Int) (n : Nat) : Int.bmod (x%n - y) n = Int.bmod (x - y) n := by
simp [Int.emod_def, Int.sub_eq_add_neg]
rw [←Int.mul_neg, Int.add_right_comm, Int.bmod_add_mul_cancel]

@[simp]
theorem sub_emod_bmod_congr (x : Int) (n : Nat) : Int.bmod (x - y%n) n = Int.bmod (x - y) n := by
simp [Int.emod_def]
rw [Int.sub_eq_add_neg, Int.neg_sub, Int.sub_eq_add_neg, ← Int.add_assoc, Int.add_right_comm,
Int.bmod_add_mul_cancel, Int.sub_eq_add_neg]

@[simp]
theorem emod_mul_bmod_congr (x : Int) (n : Nat) : Int.bmod (x%n * y) n = Int.bmod (x * y) n := by
simp [Int.emod_def, Int.sub_eq_add_neg]
Expand All @@ -1140,9 +1151,28 @@ theorem bmod_add_bmod_congr : Int.bmod (Int.bmod x n + y) n = Int.bmod (x + y) n
rw [Int.sub_eq_add_neg, Int.add_right_comm, ←Int.sub_eq_add_neg]
simp

@[simp]
theorem bmod_sub_bmod_congr : Int.bmod (Int.bmod x n - y) n = Int.bmod (x - y) n := by
rw [Int.bmod_def x n]
split
next p =>
simp only [emod_sub_bmod_congr]
next p =>
rw [Int.sub_eq_add_neg, Int.sub_eq_add_neg, Int.add_right_comm, ←Int.sub_eq_add_neg, ← Int.sub_eq_add_neg]
simp [emod_sub_bmod_congr]

@[simp] theorem add_bmod_bmod : Int.bmod (x + Int.bmod y n) n = Int.bmod (x + y) n := by
rw [Int.add_comm x, Int.bmod_add_bmod_congr, Int.add_comm y]

@[simp] theorem sub_bmod_bmod : Int.bmod (x - Int.bmod y n) n = Int.bmod (x - y) n := by
rw [Int.bmod_def y n]
split
next p =>
simp [sub_emod_bmod_congr]
next p =>
rw [Int.sub_eq_add_neg, Int.sub_eq_add_neg, Int.neg_add, Int.neg_neg, ← Int.add_assoc, ← Int.sub_eq_add_neg]
simp [sub_emod_bmod_congr]

@[simp]
theorem bmod_mul_bmod : Int.bmod (Int.bmod x n * y) n = Int.bmod (x * y) n := by
rw [bmod_def x n]
Expand Down
Loading