Skip to content

feat: toNat and toInt theorems for signExtend #30

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 67 additions & 0 deletions src/Init/Data/BitVec/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -561,6 +561,10 @@ theorem zeroExtend_eq_setWidth {v : Nat} {x : BitVec w} :
else
simp [n_le_i, toNat_ofNat]

@[simp] theorem toInt_setWidth (x : BitVec w) :
(x.setWidth v).toInt = Int.bmod x.toNat (2^v) := by
simp [toInt_eq_toNat_bmod, toNat_setWidth, Int.emod_bmod]

theorem setWidth'_eq {x : BitVec w} (h : w ≤ v) : x.setWidth' h = x.setWidth v := by
apply eq_of_toNat_eq
rw [toNat_setWidth, toNat_setWidth']
Expand Down Expand Up @@ -1578,6 +1582,69 @@ theorem signExtend_eq_setWidth_of_lt (x : BitVec w) {v : Nat} (hv : v ≤ w):
theorem signExtend_eq (x : BitVec w) : x.signExtend w = x := by
rw [signExtend_eq_setWidth_of_lt _ (Nat.le_refl _), setWidth_eq]

/-- Sign extending to a larger bitwidth depends on the msb.
If the msb is false, then the result equals the original value.
If the msb is true, then we add a value of `(2^v - 2^w)`, which arises from the sign extension. -/
theorem toNat_signExtend_of_le (x : BitVec w) {v : Nat} (hv : w ≤ v) :
(x.signExtend v).toNat = x.toNat + if x.msb then 2^v - 2^w else 0 := by
apply Nat.eq_of_testBit_eq
intro i
have ⟨k, hk⟩ := Nat.exists_eq_add_of_le hv
rw [hk, testBit_toNat, getLsbD_signExtend, Nat.pow_add, ← Nat.mul_sub_one, Nat.add_comm (x.toNat)]
by_cases hx : x.msb
· simp [hx, Nat.testBit_mul_pow_two_add _ x.isLt, testBit_toNat]
-- Case analysis on i being in the intervals [0..w), [w..w + k), [w+k..∞)
have hi : i < w ∨ (w ≤ i ∧ i < w + k) ∨ w + k ≤ i := by omega
rcases hi with hi | hi | hi
· simp [hi]; omega
· simp [hi]; omega
· simp [hi, show ¬ (i < w + k) by omega, show ¬ (i < w) by omega]
omega
· simp [hx, Nat.testBit_mul_pow_two_add _ x.isLt, testBit_toNat]
have hi : i < w ∨ (w ≤ i ∧ i < w + k) ∨ w + k ≤ i := by omega
rcases hi with hi | hi | hi
· simp [hi]; omega
· simp [hi]
· simp [hi, show ¬ (i < w + k) by omega, show ¬ (i < w) by omega, getLsbD_ge x i (by omega)]

/-- Sign extending to a larger bitwidth depends on the msb.
If the msb is false, then the result equals the original value.
If the msb is true, then we add a value of `(2^v - 2^w)`, which arises from the sign extension. -/
theorem toNat_signExtend (x : BitVec w) {v : Nat} :
(x.signExtend v).toNat = (x.setWidth v).toNat + if x.msb then 2^v - 2^w else 0 := by
by_cases h : v ≤ w
· have : 2^v ≤ 2^w := Nat.pow_le_pow_of_le_right Nat.two_pos h
simp [signExtend_eq_setWidth_of_lt x h, toNat_setWidth, Nat.sub_eq_zero_of_le this]
· have : 2^w ≤ 2^v := Nat.pow_le_pow_of_le_right Nat.two_pos (by omega)
rw [toNat_signExtend_of_le x (by omega), toNat_setWidth, Nat.mod_eq_of_lt (by omega)]


/-
If the current width `w` is smaller than the extended width `v`,
then the value when interpreted as an integer does not change.
-/
theorem toInt_signExtend_of_lt (x : BitVec w) (hv : w < v):
(x.signExtend v).toInt = x.toInt := by
simp only [toInt_eq_msb_cond, toNat_signExtend]
have : (x.signExtend v).msb = x.msb := by
rw [msb_eq_getLsbD_last, getLsbD_eq_getElem (Nat.sub_one_lt_of_lt hv)]
simp [getElem_signExtend, Nat.le_sub_one_of_lt hv]
have H := Nat.pow_le_pow_of_le_right Nat.two_pos (Nat.le_of_lt hv)
simp only [this, toNat_setWidth, Int.natCast_add, Int.ofNat_emod, Int.natCast_mul]
by_cases h : x.msb
<;> norm_cast
<;> simp [h, Nat.mod_eq_of_lt (Nat.lt_of_lt_of_le x.isLt H)]
omega

/-
If the current width `w` is larger than the extended width `v`,
then the value when interpreted as an integer is truncated,
and we compute a modulo by `2^v`.
-/
theorem toInt_signExtend_of_le (x : BitVec w) (hv : v ≤ w) :
(x.signExtend v).toInt = Int.bmod (x.toNat) (2^v) := by
simp [signExtend_eq_setWidth_of_lt _ hv]

/-! ### append -/

theorem append_def (x : BitVec v) (y : BitVec w) :
Expand Down
Loading