-
-
Notifications
You must be signed in to change notification settings - Fork 367
Revision of return results
woodbri edited this page Jul 1, 2011
·
2 revisions
(also affects Driving Distance)
See:
With a lot of help from Alex on the boost list, this code to be MUCH cleaner and it now uses std::copy. I greatly reduces the amount of template prototypes needed to get it to compile, makes it more readable and simplifies the copy back to the C array.
/*
*
*/
#include <boost/config.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <algorithm> //copy
#include <vector>
#include "dijkstra.h" //path_type_t
using namespace std;
using namespace boost;
struct Edge
{
int id;
float8 cost;
};
struct Vertex
{
int id;
int edge_id;
};
template <class G>
static void
graph_add_edge(G &graph, int id, int source, int target, float8 cost)
{
typedef typename graph_traits<G>::edge_descriptor E;
E e;
bool inserted;
if (cost < 0) // edges are not inserted in the graph if cost is negative
return;
tie(e, inserted) = add_edge(source, target, graph);
graph[e].cost = cost;
graph[e].id = id;
}
template <class G>
static int
get_edge_id(G &graph, int source, int target)
{
typedef typename graph_traits<G>::edge_descriptor E;
E e;
bool found;
tie(e, found) = boost::edge(source, target, graph);
return found ? graph[e].id : -1;
}
template <class G>
static float8
get_edge_cost(G &graph, int source, int target)
{
typedef typename graph_traits<G>::edge_descriptor E;
E e;
bool found;
tie(e, found) = boost::edge(source, target, graph);
return found ? graph[e].cost : -1;
}
int
boost_dijkstra_nodes(edge_t *edges, unsigned int count, int source_vertex_id,
double rdistance, bool directed, bool has_reverse_cost,
path_element_t **path, int *path_count, char **err_msg)
{
typedef adjacency_list < listS, vecS, directedS, Vertex, Edge > graph_t;
typedef graph_traits < graph_t >::vertex_descriptor vertex_descriptor;
typedef graph_traits < graph_t >::edge_descriptor edge_descriptor;
graph_t graph;
for (std::size_t j = 0; j < count; ++j)
{
edge_t& edge = edges[j];
graph_add_edge(graph, edge.id, edge.source, edge.target, edge.cost);
if (!directed || (directed && has_reverse_cost))
{
if (has_reverse_cost)
{
graph_add_edge(graph, edge.id, edge.target, edge.source, edge.rcost);
}
else
{
graph_add_edge(graph, edge.id, edge.target, edge.source, edge.cost);
}
}
}
std::vector<vertex_descriptor> predecessors(num_vertices(graph));
std::vector<float8> distances(num_vertices(graph));
dijkstra_shortest_paths(graph, source_vertex_id,
predecessor_map(&predecessors[0])
.weight_map(get(&Edge::cost, graph))
.distance_map(&distances[0]));
graph_traits < graph_t >::vertex_iterator vi, vend;
vector<path_element_t> path_vector;
for(tie(vi, vend) = vertices(graph); vi != vend; vi++) {
if( (double)distances[*vi] <= rdistance ) {
path_element_t pe;
vertex_descriptor p;
p = predecessors[*vi];
pe.vertex_id = *vi;
pe.parent_id = p;
pe.edge_id = get_edge_id(graph, p, *vi);
pe.cost = distances[*vi];
path_vector.push_back( pe );
}
}
if( path_vector.size() == 0 ) {
*err_msg = (char *)"No path found";
return 0;
}
*path = (path_element_t *) malloc( sizeof(path_element_t) *
path_vector.size() );
*path_count = path_vector.size();
std::copy(path_vector.begin(), path_vector.end(), *path);
return EXIT_SUCCESS;
}