Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Denoise nl_means script #972

Merged
merged 9 commits into from
Nov 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 52 additions & 0 deletions scilpy/image/volume_metrics.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
# -*- coding: utf-8 -*-
import logging

from dipy.denoise.noise_estimate import piesno
import numpy as np


def estimate_piesno_sigma(data, number_coils=0):
"""
Here are Dipy's note on this method:
> It is expected that
> 1. The data has a noisy, non-masked background and
> 2. The data is a repetition of the same measurements along the last
> axis, i.e. dMRI or fMRI data, not structural data like T1/T2."

Parameters
----------
data: np.ndarray
The 4D volume.
number_coils: int
The number of coils in the scanner.
"""
assert len(data.shape) == 4

sigma = np.zeros(data.shape[:3], dtype=np.float32)
mask_noise = np.zeros(data.shape[:3], dtype=np.int16)

for idx in range(data.shape[-2]):
logging.info('Now processing slice {} / {}'
.format(idx + 1, data.shape[-2]))
sigma[..., idx], mask_noise[..., idx] = \
piesno(data[..., idx, :], N=number_coils, return_mask=True)

# If the noise mask has few voxels, the detected noise standard
# deviation can be very low and maybe something went wrong. We
# check here that at least 1% of noisy voxels were found and warn
# the user otherwise.
frac_noisy_voxels = np.sum(mask_noise) / np.size(mask_noise) * 100

if frac_noisy_voxels < 1.:
logging.warning(
'PIESNO was used with N={}, but it found only {:.3f}% of voxels '
'as pure noise with a mean standard deviation of {:.5f}. This is '
'suspicious, so please check the resulting sigma volume if '
'something went wrong. In cases where PIESNO is not working, '
'you might want to try basic sigma estimation.'
.format(number_coils, frac_noisy_voxels, np.mean(sigma)))
else:
logging.info('The noise standard deviation from piesno is %s',
np.array_str(sigma[0, 0, :]))

return sigma, mask_noise
7 changes: 3 additions & 4 deletions scilpy/stats/stats.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
# -*- coding: utf-8 -*-

import logging

from itertools import combinations
import logging

import scipy.stats

Expand Down Expand Up @@ -49,7 +48,7 @@ def verify_homoscedasticity(data_by_group, normality=False, alpha=0.05):
The sample data separated by groups.
Possibly of different group size.
normality: bool
Whether or not the sample data of each groups can be considered normal
Whether or not the sample data of each group can be considered normal
alpha: float
Type 1 error of the equality of variance test
Probability of false positive or rejecting null hypothesis
Expand Down Expand Up @@ -98,7 +97,7 @@ def verify_group_difference(data_by_group, normality=False,
The sample data separated by groups.
Possibly of different group size.
normality: bool
Whether or not the sample data of each groups can be considered normal.
Whether or not the sample data of each group can be considered normal.
homoscedasticity: bool
Whether or not the equality of variance across groups can be assumed.
alpha: float
Expand Down
231 changes: 170 additions & 61 deletions scripts/scil_denoising_nlmeans.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,52 @@
# -*- coding: utf-8 -*-

"""
Script to denoise a dataset with the Non Local Means algorithm.
Script to denoise a dataset with the Non-Local Means algorithm (from Dipy's
package).

This method requires an estimate of the noise (sigma). There are three methods
available:
1. Provide your own sigma value, if you already know it.
2. Estimate it through Dipy's "noise_estimate" method.
Here are Dipy's note on this method:
> This function is the same as manually taking the standard deviation of
> the background and gives one value for each 3D volume. It also includes
> the coil-dependent correction factor of Koay 2006 (see [1], equation 18)
> with theta = 0. Since this function was introduced in [2] for T1
> imaging, it is expected to perform ok on diffusion MRI data, but might
> oversmooth some regions and leave others un-denoised for spatially
> varying noise profiles. Consider using --piesno to estimate sigma
> instead if visual inaccuracies are apparent in the denoised result.
(Note. We then use the median of the noise for all volumes)
3. Estimate it through using Dipy's "Piesno" method, as described in [3].
Here are Dipy's note on this method:
> It is expected that
> 1. The data has a noisy, non-masked background and
> 2. The data is a repetition of the same measurements along the last
> axis, i.e. dMRI or fMRI data, not structural data like T1 or T2
> images.

The two last methods require the number of coils in the data to be known.
Typically, if you know that the noise follows a Gaussian distribution, you
may use --number_coils=0.

References:
[1] Koay, C. G., & Basser, P. J. (2006). Analytically exact correction scheme
for signal extraction from noisy magnitude MR signals. Journal of Magnetic
Resonance, 179(2), 317-22.
[2] Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot,
C., (2008). An optimized blockwise nonlocal means denoising filter for 3-D
magnetic resonance images, IEEE Trans. Med. Imaging 27, 425-41.
[3] St-Jean, S., Coupé, P., & Descoteaux, M. (2016). Non Local Spatial and
Angular Matching: Enabling higher spatial resolution diffusion MRI datasets
through adaptive denoising. Medical image analysis, 32, 115-130.
[4] Koay CG, Ozarslan E and Pierpaoli C. "Probabilistic Identification and
Estimation of Noise (PIESNO): A self-consistent approach and its applications
in MRI." Journal of Magnetic Resonance 2009; 199: 94-103.

Formerly: scil_run_nlmeans.py
"""

"""
import argparse
import logging
import warnings
Expand All @@ -16,104 +57,172 @@
import nibabel as nib
import numpy as np

from scilpy.image.volume_metrics import estimate_piesno_sigma
from scilpy.io.image import get_data_as_mask
from scilpy.io.utils import (add_processes_arg,
add_overwrite_arg,
add_verbose_arg,
assert_inputs_exist,
assert_outputs_exist,
assert_headers_compatible)
assert_headers_compatible, ranged_type)


def _build_arg_parser():
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawTextHelpFormatter)

p.add_argument('in_image',
help='Path of the image file to denoise.')
help='Path of the image file to denoise (3D or 4D data)')
p.add_argument('out_image',
help='Path to save the denoised image file.')
p.add_argument('number_coils', type=int,
help='Number of receiver coils of the scanner.\nUse '
'number_coils=1 in the case of a SENSE (GE, Philips) '
'reconstruction and \nnumber_coils >= 1 for GRAPPA '
'reconstruction (Siemens). number_coils=4 works well '
'for the 1.5T\n in Sherbrooke. Use number_coils=0 if '
'the noise is considered Gaussian distributed.')

p.add_argument('--mask', metavar='',
help='Path to a binary mask. Only the data inside the mask'
' will be used for computations')
p.add_argument('--sigma', metavar='float', type=float,
help='The standard deviation of the noise to use instead '
'of computing it automatically.')
p.add_argument('--log', dest="logfile",
help='If supplied, name of the text file to store '
'the logs.')
EmmaRenauld marked this conversation as resolved.
Show resolved Hide resolved
p.add_argument('--mask_denoise',
help="Path to a binary mask. Only the data inside the mask "
"will be denoised. If not provided, only non-zero "
"voxels will be denoised.")
p.add_argument('--gaussian', action='store_true',
help="If you know that your data contains gaussian noise, "
"use this option. Otherwise, Rician is assumed.")

g = p.add_argument_group("Noise estimation methods")
g = g.add_mutually_exclusive_group(required=True)
g.add_argument(
'--sigma', metavar='float', type=float,
help='Provide your own standard deviation of the noise.')
g.add_argument(
'--basic_sigma', action='store_true',
help="Use dipy's basic estimation of sigma.")
g.add_argument(
'--piesno', action='store_true',
help="Estimate sigma using Piesno's method.")

g = p.add_argument_group("Noise estimation options: piesno and basic")
g.add_argument(
'--number_coils', type=ranged_type(int, min_value=0),
help="Option for Dipy's noise estimation. Here is their description:\n"
">Number of coils of the receiver array. Use N = 1 in case of a\n"
">SENSE reconstruction (Philips scanners) or the number of \n"
">coils for a GRAPPA reconstruction (Siemens and GE). Use 0 to \n"
">disable the correction factor, as for example if the noise is\n"
">Gaussian distributed. See [1] for more information.\n"
"Note. If you don't know the number of coils, 0 will probably "
"work.")

g = p.add_argument_group("Noise estimation options: basic")
gg = g.add_mutually_exclusive_group()
gg.add_argument(
'--mask_sigma',
EmmaRenauld marked this conversation as resolved.
Show resolved Hide resolved
help='Path to a binary mask for --basic_sigma estimation. Only the '
'data inside the mask will be used to estimate sigma. If not '
'provided, only non-zero voxels will be used.')
mdesco marked this conversation as resolved.
Show resolved Hide resolved
gg.add_argument(
'--sigma_from_all_voxels', action='store_true',
help="If set, all voxels are used for the --basic_sigma estimation, "
"even zeros.")

g = p.add_argument_group("Noise estimation options: piesno")
g.add_argument('--save_piesno_mask', metavar='filepath',
help="If set, save piesno mask.")

add_processes_arg(p)
add_verbose_arg(p)
add_overwrite_arg(p)
return p


def _get_basic_sigma(data):
# We force to zero as the 3T is either oversmoothed or still noisy, but
# we prefer the second option
logging.info("In basic noise estimation, number_coils=0 is enforced!")
sigma = estimate_sigma(data, N=0)

# Use a single value for all of the volumes.
# This is the same value for a given bval with this estimator
sigma = np.median(sigma)
logging.info('The noise standard deviation from the basic estimation '
'is {}'.format(sigma))

# Broadcast the single value to a whole 3D volume for nlmeans
return np.ones(data.shape[:3]) * sigma


def main():
parser = _build_arg_parser()
args = parser.parse_args()
logging.getLogger().setLevel(logging.getLevelName(args.verbose))

assert_inputs_exist(parser, args.in_image, args.mask)
assert_outputs_exist(parser, args, args.out_image, args.logfile)
assert_headers_compatible(parser, args.in_image, args.mask)
# Verifications
if (args.number_coils is not None and args.number_coils == 0 and
not args.gaussian):
logging.warning("Usually, with --number_coils 0, the data ìs "
"considered to have Gaussian noise, but you "
"did not select --gaussian. Proceed with care.")

if (args.basic_sigma or args.piesno) and args.number_coils is None:
parser.error("Please provide the number of coils for basic_sigma "
"and piesno options.")

if args.piesno or args.sigma:
if args.sigma_from_all_voxels:
parser.error("You selected --sigma_from_all_voxels, but this is "
"only available for the --basic_sigma method.")
if args.mask_sigma:
parser.error("You selected --mask_sigma, but this is "
"only available for the --basic_sigma method.")

if args.save_piesno_mask and not args.piesno:
parser.error("Option --save_piesno_mask cannot be used when --pieno "
"is not selected.")

assert_inputs_exist(parser, args.in_image,
[args.mask_denoise, args.mask_sigma])
assert_outputs_exist(parser, args, args.out_image, args.save_piesno_mask)
assert_headers_compatible(parser, args.in_image,
[args.mask_denoise, args.mask_sigma])

# Loading
vol = nib.load(args.in_image)
vol_data = vol.get_fdata(dtype=np.float32)

if args.logfile is not None:
logging.getLogger().addHandler(logging.FileHandler(args.logfile,
mode='w'))
if args.piesno and (len(vol_data.shape) != 4 or vol_data.shape[3] == 1):
parser.error("The piesno method requires 4D data.")

vol = nib.load(args.in_image)
data = vol.get_fdata(dtype=np.float32)
if args.mask is None:
mask = np.zeros(data.shape[0:3], dtype=bool)
if data.ndim == 4:
mask[np.sum(data, axis=-1) > 0] = 1
# Denoising mask
if args.mask_denoise is None:
mask_denoise = np.zeros(vol_data.shape[0:3], dtype=bool)
if vol_data.ndim == 4:
mask_denoise[np.sum(vol_data, axis=-1) > 0] = True
else:
mask[data > 0] = 1
mask_denoise[vol_data > 0] = True
else:
mask = get_data_as_mask(nib.load(args.mask), dtype=bool)

sigma = args.sigma
mask_denoise = get_data_as_mask(nib.load(args.mask_denoise),
dtype=bool)

# Processing
if args.sigma is not None:
logging.info('User supplied noise standard deviation is {}'
.format(args.sigma))
sigma = args.sigma
elif args.basic_sigma:
if args.mask_sigma:
mask_sigma = get_data_as_mask(nib.load(args.mask_sigma))
tmp_vol_data = (vol_data * mask_sigma[:, :, :, None]
).astype(np.float32)
else:
tmp_vol_data = vol_data.astype(np.float32)

if sigma is not None:
logging.info('User supplied noise standard deviation is '
'{}'.format(sigma))
# Broadcast the single value to a whole 3D volume for nlmeans
sigma = np.ones(data.shape[:3]) * sigma
else:
logging.info('Estimating noise')
sigma = _get_basic_sigma(vol.get_fdata(dtype=np.float32))
sigma = estimate_sigma(
tmp_vol_data,
disable_background_masking=args.sigma_from_all_voxels,
N=args.number_coils)
logging.info(
"The estimated noise for each volume is: {}".format(sigma))
sigma = np.median(sigma) # Managing 4D data.
logging.info('The median noise is: {}'.format(sigma))
else: # --piesno
sigma, mask_noise = estimate_piesno_sigma(vol_data, args.number_coils)

if args.save_piesno_mask:
logging.info("Saving resulting Piesno noise mask in {}"
.format(args.save_piesno_mask))
nib.save(nib.Nifti1Image(mask_noise, vol.affine,
header=vol.header),
args.save_piesno_mask)

# Broadcast the single value to a whole 3D volume for nlmeans
sigma = np.ones(vol_data.shape[:3]) * sigma

with warnings.catch_warnings():
warnings.simplefilter("ignore", category=DeprecationWarning)
data_denoised = nlmeans(
data, sigma, mask=mask, rician=args.number_coils > 0,
vol_data, sigma, mask=mask_denoise, rician=not args.gaussian,
num_threads=args.nbr_processes)

# Saving
nib.save(nib.Nifti1Image(data_denoised, vol.affine, header=vol.header),
args.out_image)

Expand Down
Loading