Skip to content

Commit

Permalink
Update RMK.lean
Browse files Browse the repository at this point in the history
  • Loading branch information
yoh-tanimoto committed Mar 31, 2024
1 parent 724312c commit 96b4c46
Showing 1 changed file with 37 additions and 26 deletions.
63 changes: 37 additions & 26 deletions yoh/RMK/RMK.lean
Original file line number Diff line number Diff line change
Expand Up @@ -158,17 +158,6 @@ riesContent' V such that E ⊆ V. -/
def rieszContent' : Set X → ℝ≥0∞ := fun E =>
sInf (rieszContentAux' Λ '' { V : Opens X | E ⊆ V })

def M_F (Λ : (X →ᵇ ℝ) →ₗ[ℝ] ℝ) : Set (Set X) := {E : Set X | rieszContent' Λ E < ∞
∧ rieszContent' Λ E = sSup (rieszContent' Λ '' {K : Set X | IsCompact K ∧ K ⊂ E })}

def M (Λ : (X →ᵇ ℝ) →ₗ[ℝ] ℝ) : Set (Set X) :=
{E : Set X | ∀ (K : Set X), IsCompact K → (E ∩ K) ∈ M_F Λ}

-- P.42 of Rudin "Real and Complex analysis"
-- Continue with "Proof that μ and M have the required properties"



/-- rieszContent' is monotone. -/
lemma rieszContent'_mono {E₁ E₂ : Set X} (h : E₁ ⊆ E₂) : rieszContent' Λ E₁ ≤ rieszContent' Λ E₂ := by
apply sInf_le_sInf
Expand All @@ -180,27 +169,49 @@ lemma rieszContent'_mono {E₁ E₂ : Set X} (h : E₁ ⊆ E₂) : rieszContent'
/-- rieszContent' coincides with rieszContentAux' on open sets. -/
lemma rieszContent'_eq_rieszContentAux'_open (V : Opens X) :
rieszContent' Λ V = rieszContentAux' Λ V := by
have hle : rieszContent' Λ V ≤ rieszContentAux' Λ V := by
apply sInf_le_of_le
use V
simp only [SetLike.coe_subset_coe, mem_setOf_eq, le_refl, true_and]
rfl
exact rieszContentAux'_mono Λ fun ⦃a⦄ a => a
have hge : rieszContentAux' Λ V ≤ rieszContent' Λ V := by
apply le_sInf
intro x hx
simp only [SetLike.coe_subset_coe, mem_image, mem_setOf_eq] at hx
obtain ⟨V', hV'⟩ := hx
rw [← hV'.2]
exact rieszContentAux'_mono Λ hV'.1
exact le_antisymm hle hge
apply le_antisymm
apply sInf_le_of_le
use V
simp only [SetLike.coe_subset_coe, mem_setOf_eq, le_refl, true_and]
rfl
exact rieszContentAux'_mono Λ fun ⦃a⦄ a => a
apply le_sInf
intro x hx
simp only [SetLike.coe_subset_coe, mem_image, mem_setOf_eq] at hx
obtain ⟨V', hV'⟩ := hx
rw [← hV'.2]
exact rieszContentAux'_mono Λ hV'.1

def M_F (Λ : (X →ᵇ ℝ) →ₗ[ℝ] ℝ) : Set (Set X) := {E : Set X | rieszContent' Λ E < ∞
∧ rieszContent' Λ E = sSup (rieszContent' Λ '' {K : Set X | IsCompact K ∧ K ⊆ E })}

def M (Λ : (X →ᵇ ℝ) →ₗ[ℝ] ℝ) : Set (Set X) :=
{E : Set X | ∀ (K : Set X), IsCompact K → (E ∩ K) ∈ M_F Λ}

-- P.42 of Rudin "Real and Complex analysis"
-- Continue with "Proof that μ and M have the required properties"

lemma in_M_F_of_rieszContent'_zero {E : Set X} (h : rieszContent' Λ E = 0) : E ∈ M_F Λ := by
sorry

lemma in_M_of_rieszContent'_zero {E : Set X} (h : rieszContent' Λ E = 0) : E ∈ M Λ := by
sorry
intro K _
have : rieszContent' Λ (E ∩ K) = 0 := by
apply le_antisymm
rw [← h]
exact rieszContent'_mono Λ (Set.inter_subset_left E K)
exact zero_le (rieszContent' Λ (E ∩ K))
constructor
· rw [this]
exact zero_lt_top
· apply le_antisymm
rw [this]
exact zero_le (sSup (rieszContent' Λ '' {K_1 | IsCompact K_1 ∧ K_1 ⊆ E ∩ K}))
apply sSup_le
intro x hx
obtain ⟨E', hE'⟩ := hx
rw [← hE'.2]
exact rieszContent'_mono Λ hE'.1.2

/-- The Riesz content μ associated to a given positive linear functional Λ is
finitely subadditive for open sets : `μ (V₁ ∪ V₂) ≤ μ(V₁) + μ(V₂)`. -/
Expand Down

0 comments on commit 96b4c46

Please sign in to comment.