Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

change exp to xexpy #470

Conversation

SamuelBrand1
Copy link
Collaborator

@SamuelBrand1 SamuelBrand1 commented Oct 3, 2024

This is a small PR to replace the calculation of ExpGrowthRate infection generating process with LogExpFunctions.xexpy to get their overflow properties.

The reason I targeted this specific bit of the code base it that everywhere else we can define transformation whereas here the exp transform is baked into the meaning of the igp.

Closes #469 .

NB: I also changed from cumsum to accumulate(+, rt; init = init_incidence) to avoid a broadcast add before applying the "safe" xexpy. I wonder if anything shows in benchmarks.

Copy link
Contributor

github-actions bot commented Oct 3, 2024

Try this Pull Request!

Open Julia and type:

import Pkg
Pkg.activate(temp=true)
Pkg.add(url="https://github.com/CDCgov/Rt-without-renewal", rev="469-change-calculation-method-in-epiawarebasegenerate_latent_infsepi_modelexpgrowthrate-rt", subdir="EpiAware")
using EpiAware

seabbs
seabbs previously approved these changes Oct 3, 2024
Copy link
Collaborator

@seabbs seabbs left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nice. Agree we should hold off merging until we see what happens in the benchmarks

@codecov-commenter
Copy link

codecov-commenter commented Oct 3, 2024

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 90.02%. Comparing base (21fb991) to head (5a429ca).

Additional details and impacted files
@@           Coverage Diff           @@
##             main     #470   +/-   ##
=======================================
  Coverage   90.02%   90.02%           
=======================================
  Files          57       57           
  Lines         742      742           
=======================================
  Hits          668      668           
  Misses         74       74           

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

Copy link
Contributor

github-actions bot commented Oct 3, 2024

Benchmark result

Judge result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmarks:
    • Target: 3 Oct 2024 - 14:23
    • Baseline: 3 Oct 2024 - 14:47
  • Package commits:
    • Target: 8b4de0
    • Baseline: 4c2953
  • Julia commits:
    • Target: 6f3fdf
    • Baseline: 6f3fdf
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 1.11 (5%) ❌ 1.06 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 1.10 (5%) ❌ 1.06 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.11 (5%) ❌ 1.12 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.08 (5%) ❌ 1.12 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.43 (5%) ✅ 0.79 (1%) ✅
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.43 (5%) ✅ 0.79 (1%) ✅
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.13 (5%) ❌ 0.35 (1%) ✅
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.16 (5%) ❌ 0.35 (1%) ✅
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 0.92 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.27 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.09 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "Intercept", "evaluation", "standard"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.91 (5%) ✅ 1.00 (1%)
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.07 (5%) ❌ 1.00 (1%)
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.17 (5%) ❌ 1.00 (1%)
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.92 (5%) ✅ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Target

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2961 MHz       5851 s          0 s        564 s      12870 s          0 s
       #2  2598 MHz       6395 s          0 s        588 s      12305 s          0 s
       #3  3248 MHz       4163 s          0 s        524 s      14584 s          0 s
       #4  3243 MHz       4366 s          0 s        472 s      14442 s          0 s
  Memory: 15.615272521972656 GB (12732.0546875 MB free)
  Uptime: 1932.78 sec
  Load Avg:  1.05  1.05  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz       9027 s          0 s        926 s      24006 s          0 s
       #2  2990 MHz      10152 s          0 s        977 s      22836 s          0 s
       #3  2762 MHz       7081 s          0 s        860 s      26008 s          0 s
       #4  3243 MHz       8230 s          0 s        894 s      24834 s          0 s
  Memory: 15.615272521972656 GB (12238.8203125 MB free)
  Uptime: 3402.38 sec
  Load Avg:  1.02  1.04  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 3 Oct 2024 - 14:23
  • Package commit: 8b4de0
  • Julia commit: 6f3fdf
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 2.044 μs (5%) 416 bytes (1%) 5
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 302.248 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 302.747 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 432.116 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 434.789 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.468 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.508 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 550.497 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 557.358 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 236.356 ns (5%) 272 bytes (1%) 5
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 234.296 ns (5%) 272 bytes (1%) 5
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 349.041 ns (5%) 576 bytes (1%) 10
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 340.365 ns (5%) 576 bytes (1%) 10
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 3.892 μs (5%) 4.44 KiB (1%) 107
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 3.974 μs (5%) 4.44 KiB (1%) 107
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 620.116 ns (5%) 96 bytes (1%) 2
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 631.542 ns (5%) 96 bytes (1%) 2
["EpiLatentModels", "AR", "evaluation", "linked"] 1.966 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.597 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.557 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 3.026 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 105.078 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 69.030 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.302 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.699 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.525 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.275 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.953 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.666 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 43.772 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.654 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.019 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.740 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 61.035 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 55.304 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 123.592 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 116.429 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 183.926 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 141.916 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.773 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.391 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 10.771 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 8.686 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 13.255 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.068 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 73.178 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 51.537 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.265 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.983 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.865 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.345 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.054 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.669 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 57.999 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 43.632 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.913 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.502 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 416.055 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 359.148 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.331 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 973.049 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.839 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.660 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.262 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.064 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 249.566 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 249.678 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 347.257 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 346.019 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.208 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.206 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 462.391 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 455.066 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.800 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.650 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.775 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.253 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.403 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.024 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.243 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.049 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 892.109 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 762.632 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.818 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.703 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.395 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.547 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.626 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.344 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 570.310 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 475.332 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 789.654 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 677.181 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.649 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.580 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.153 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 964.955 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 305.063 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 304.551 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 402.846 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 401.950 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.410 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.444 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 523.916 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 527.621 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.034 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.618 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.871 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.512 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 58.800 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 39.906 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.096 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.862 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.161 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.669 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.885 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.426 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 81.813 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.808 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.490 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.666 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.266 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.231 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.219 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.142 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 49.463 μs (5%) 39.05 KiB (1%) 905
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 33.273 μs (5%) 33.83 KiB (1%) 796
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.901 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.754 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 16.431 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 16.380 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 21.921 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.350 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 288.633 μs (5%) 293.61 KiB (1%) 6804
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 266.120 μs (5%) 288.39 KiB (1%) 6695
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 54.192 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 59.020 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.158 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.134 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.783 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.702 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.225 μs (5%) 36.33 KiB (1%) 899
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.337 μs (5%) 31.11 KiB (1%) 790
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.671 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.686 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.547 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.221 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.244 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.528 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 136.867 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.434 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.095 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.245 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.650 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.624 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.845 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.769 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 22.122 μs (5%) 12.91 KiB (1%) 283
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.466 μs (5%) 7.69 KiB (1%) 174
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.323 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.056 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 6.941 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 6.929 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.951 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.812 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 58.911 μs (5%) 49.23 KiB (1%) 1020
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.066 μs (5%) 44.02 KiB (1%) 911
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.546 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.190 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.354 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.022 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.788 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.296 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 78.658 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 60.514 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.666 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.455 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.519 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.005 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.116 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.602 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 28.484 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 12.935 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.281 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.030 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 441.490 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 409.720 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 579.604 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 532.152 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 23.865 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.339 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.927 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.677 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.818 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.659 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.701 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.526 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 38.612 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 22.803 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.278 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.029 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2961 MHz       5851 s          0 s        564 s      12870 s          0 s
       #2  2598 MHz       6395 s          0 s        588 s      12305 s          0 s
       #3  3248 MHz       4163 s          0 s        524 s      14584 s          0 s
       #4  3243 MHz       4366 s          0 s        472 s      14442 s          0 s
  Memory: 15.615272521972656 GB (12732.0546875 MB free)
  Uptime: 1932.78 sec
  Load Avg:  1.05  1.05  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 3 Oct 2024 - 14:47
  • Package commit: 4c2953
  • Julia commit: 6f3fdf
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 2.046 μs (5%) 416 bytes (1%) 5
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 301.714 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 309.267 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 430.055 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 439.015 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.247 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.218 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 549.968 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 551.090 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 213.318 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 212.622 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 315.679 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 314.837 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.138 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.218 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 549.165 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 545.179 ns (5%) 272 bytes (1%) 6
["EpiLatentModels", "AR", "evaluation", "linked"] 2.013 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.603 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.564 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.994 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 105.298 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 69.190 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.072 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.419 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.506 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.281 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.049 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.703 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.243 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.253 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.993 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.711 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 61.606 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 56.136 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 124.614 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 117.481 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 188.143 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 143.790 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.523 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.090 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.682 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 9.127 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 12.934 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.039 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 74.890 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 52.819 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.075 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.876 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.928 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.341 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.001 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.667 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 58.210 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 43.272 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.538 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.370 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 420.186 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 359.414 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.047 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 889.700 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.739 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.399 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.231 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.065 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 257.650 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 269.226 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 351.547 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 352.582 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.274 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.188 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 448.874 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 456.645 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.861 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.695 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.064 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.272 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.355 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.435 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.251 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.063 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 897.213 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 760.359 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.850 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.672 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.067 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.227 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.598 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.320 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 574.837 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 469.508 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 793.242 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 667.497 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 42.450 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.761 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.148 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 968.294 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 308.570 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 308.585 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 404.060 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 403.597 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.543 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.438 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 518.937 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 519.932 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.101 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.616 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.848 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.415 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 57.868 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.846 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.018 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.800 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.181 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.691 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.861 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.428 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 82.985 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.207 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.355 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.652 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.296 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.265 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.222 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.149 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 50.064 μs (5%) 39.05 KiB (1%) 905
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 34.425 μs (5%) 33.83 KiB (1%) 796
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.686 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.535 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 16.400 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 16.411 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 21.911 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.099 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 295.795 μs (5%) 293.61 KiB (1%) 6804
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 272.432 μs (5%) 288.39 KiB (1%) 6695
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 50.505 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 50.265 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.154 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.136 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.817 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.698 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.966 μs (5%) 36.33 KiB (1%) 899
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 31.299 μs (5%) 31.11 KiB (1%) 790
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.836 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.564 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.538 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.206 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.208 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.560 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 135.945 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.644 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.727 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.292 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.699 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.662 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.855 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.825 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 22.763 μs (5%) 12.91 KiB (1%) 283
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.726 μs (5%) 7.69 KiB (1%) 174
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.339 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.052 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 6.890 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 6.901 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 8.008 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.861 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 60.112 μs (5%) 49.23 KiB (1%) 1020
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.468 μs (5%) 44.02 KiB (1%) 911
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.348 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.202 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.435 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.136 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.833 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.383 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 79.560 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 62.237 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.704 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.463 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.543 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.016 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.157 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.597 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 28.814 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.365 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.348 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.027 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 442.096 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 412.775 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 574.228 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 526.796 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 23.834 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.790 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.955 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.699 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.843 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.706 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.686 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.533 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 38.963 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.083 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.322 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.020 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz       9027 s          0 s        926 s      24006 s          0 s
       #2  2990 MHz      10152 s          0 s        977 s      22836 s          0 s
       #3  2762 MHz       7081 s          0 s        860 s      26008 s          0 s
       #4  3243 MHz       8230 s          0 s        894 s      24834 s          0 s
  Memory: 15.615272521972656 GB (12238.8203125 MB free)
  Uptime: 3402.38 sec
  Load Avg:  1.02  1.04  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               4
On-line CPU(s) list:                  0-3
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7763 64-Core Processor
CPU family:                           25
Model:                                1
Thread(s) per core:                   2
Core(s) per socket:                   2
Socket(s):                            1
Stepping:                             1
BogoMIPS:                             4890.85
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves user_shstk clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                       AMD-V
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            64 KiB (2 instances)
L1i cache:                            64 KiB (2 instances)
L2 cache:                             1 MiB (2 instances)
L3 cache:                             32 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-3
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

…egenerate_latent_infsepi_modelexpgrowthrate-rt
@SamuelBrand1
Copy link
Collaborator Author

updated a hotfix for the doc fix

@SamuelBrand1 SamuelBrand1 requested a review from seabbs October 3, 2024 15:04
Copy link
Contributor

github-actions bot commented Oct 3, 2024

Benchmark result

Judge result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmarks:
    • Target: 3 Oct 2024 - 15:30
    • Baseline: 3 Oct 2024 - 15:55
  • Package commits:
    • Target: bfb8b9
    • Baseline: 21fb99
  • Julia commits:
    • Target: 6f3fdf
    • Baseline: 6f3fdf
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 1.13 (5%) ❌ 1.06 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 1.13 (5%) ❌ 1.06 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.09 (5%) ❌ 1.12 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.10 (5%) ❌ 1.12 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.43 (5%) ✅ 0.79 (1%) ✅
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.43 (5%) ✅ 0.79 (1%) ✅
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.19 (5%) ❌ 0.35 (1%) ✅
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.18 (5%) ❌ 0.35 (1%) ✅
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.08 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.77 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.10 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.07 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.84 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.91 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 0.74 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.05 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.10 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.93 (5%) ✅ 1.00 (1%)
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.06 (5%) ❌ 1.00 (1%)
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.07 (5%) ❌ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Target

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2837 MHz       2958 s          0 s        380 s      12548 s          0 s
       #2  3243 MHz       4486 s          0 s        475 s      10903 s          0 s
       #3  3200 MHz       3373 s          2 s        367 s      12132 s          0 s
       #4  2980 MHz       3008 s          0 s        352 s      12526 s          0 s
  Memory: 15.615272521972656 GB (12866.9921875 MB free)
  Uptime: 1592.61 sec
  Load Avg:  1.01  1.02  0.87
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3243 MHz       6423 s          0 s        736 s      23299 s          0 s
       #2  2445 MHz       6934 s          0 s        794 s      22709 s          0 s
       #3  3243 MHz       7040 s          2 s        732 s      22677 s          0 s
       #4  2797 MHz       7052 s          0 s        782 s      22628 s          0 s
  Memory: 15.615272521972656 GB (12650.6953125 MB free)
  Uptime: 3051.95 sec
  Load Avg:  1.06  1.03  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 3 Oct 2024 - 15:30
  • Package commit: bfb8b9
  • Julia commit: 6f3fdf
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 2.054 μs (5%) 416 bytes (1%) 5
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 310.624 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 313.731 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 432.618 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 435.945 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.338 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.237 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 566.059 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 570.957 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 238.642 ns (5%) 272 bytes (1%) 5
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 237.247 ns (5%) 272 bytes (1%) 5
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 334.590 ns (5%) 576 bytes (1%) 10
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 337.120 ns (5%) 576 bytes (1%) 10
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.016 μs (5%) 4.44 KiB (1%) 107
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.003 μs (5%) 4.44 KiB (1%) 107
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 644.078 ns (5%) 96 bytes (1%) 2
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 645.691 ns (5%) 96 bytes (1%) 2
["EpiLatentModels", "AR", "evaluation", "linked"] 1.953 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.585 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.538 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.952 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 105.988 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 69.820 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.001 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.509 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.518 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.300 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.031 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.691 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.104 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.092 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.075 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.825 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 59.671 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 56.405 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 123.641 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 117.399 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 187.711 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 144.601 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.492 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.180 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.001 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 8.956 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 12.743 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 9.928 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 74.348 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 52.298 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.251 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.981 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.902 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.389 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.923 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.578 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 58.369 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 42.079 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.176 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.608 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 421.894 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 361.195 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.020 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 951.818 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.177 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.290 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.280 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.063 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 252.040 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 251.669 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 349.229 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 349.495 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.218 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.176 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 490.713 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 478.333 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.859 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.718 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.393 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.154 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.796 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.165 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.274 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.070 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 882.400 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 789.863 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.668 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.559 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.175 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.535 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.720 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.475 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 591.828 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 486.061 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 815.473 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 678.185 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.386 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.259 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.173 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 984.474 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 309.700 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 307.854 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 407.810 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 408.115 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.493 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.461 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 559.914 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 549.856 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.006 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.679 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.767 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.390 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 57.698 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 39.674 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.283 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.230 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.181 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.629 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.883 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.229 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 83.266 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.457 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.308 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.742 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.317 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.257 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.231 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.156 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 48.310 μs (5%) 39.05 KiB (1%) 905
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 32.400 μs (5%) 33.83 KiB (1%) 796
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.812 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.686 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 16.390 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 16.320 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 22.352 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.391 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 286.325 μs (5%) 293.61 KiB (1%) 6804
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 266.799 μs (5%) 288.39 KiB (1%) 6695
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 53.129 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 52.808 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.159 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.134 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.820 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.700 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.124 μs (5%) 36.33 KiB (1%) 899
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.257 μs (5%) 31.11 KiB (1%) 790
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.853 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.702 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.532 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.206 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.185 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.564 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 136.735 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.755 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.286 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.391 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.717 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.661 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.867 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.810 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 22.542 μs (5%) 12.91 KiB (1%) 283
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.392 μs (5%) 7.69 KiB (1%) 174
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.249 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.065 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 6.878 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 6.905 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.975 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.877 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 58.288 μs (5%) 49.23 KiB (1%) 1020
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.568 μs (5%) 44.02 KiB (1%) 911
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.508 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.170 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.364 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.261 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.575 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.282 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 78.817 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 61.505 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.138 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.722 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.581 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.017 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.217 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.669 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 28.444 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.385 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.390 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.064 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 445.177 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 414.125 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 571.777 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 529.568 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 23.965 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.479 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.083 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.705 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.827 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.670 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.706 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.546 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 38.361 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.163 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.378 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.064 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2837 MHz       2958 s          0 s        380 s      12548 s          0 s
       #2  3243 MHz       4486 s          0 s        475 s      10903 s          0 s
       #3  3200 MHz       3373 s          2 s        367 s      12132 s          0 s
       #4  2980 MHz       3008 s          0 s        352 s      12526 s          0 s
  Memory: 15.615272521972656 GB (12866.9921875 MB free)
  Uptime: 1592.61 sec
  Load Avg:  1.01  1.02  0.87
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 3 Oct 2024 - 15:55
  • Package commit: 21fb99
  • Julia commit: 6f3fdf
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 2.048 μs (5%) 416 bytes (1%) 5
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 306.019 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 307.795 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 451.298 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 445.457 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.357 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.598 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 546.418 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 543.926 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 211.544 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 210.102 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 306.785 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 306.028 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.297 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.268 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 543.503 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 547.569 ns (5%) 272 bytes (1%) 6
["EpiLatentModels", "AR", "evaluation", "linked"] 2.055 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.593 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.595 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.976 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 102.762 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 68.238 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.012 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.478 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.516 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.288 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.004 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.673 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 43.141 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.652 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.947 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.699 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 61.775 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 55.975 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 124.923 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 118.572 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 187.821 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 142.096 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.854 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.300 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.832 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 9.177 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 13.135 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.199 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 74.430 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 53.100 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.136 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.892 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.885 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.351 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.038 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.621 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.060 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.056 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.614 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.408 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 433.975 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 374.670 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.325 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 897.938 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.929 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.131 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.263 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.104 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 262.245 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 255.533 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 345.073 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 346.296 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.145 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.228 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 445.581 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 446.237 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.863 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.701 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.856 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.310 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.295 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.866 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.260 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.080 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 873.128 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 761.817 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.823 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.667 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.394 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.314 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.562 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.325 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 619.958 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 489.694 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 783.845 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 662.957 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 42.350 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.101 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.167 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 991.200 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 305.452 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 314.862 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 407.410 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 413.820 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.463 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.488 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 526.325 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 516.750 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.728 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.649 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.789 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.466 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 57.577 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.565 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.024 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.740 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.173 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.630 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.853 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.389 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 81.452 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.456 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.418 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.743 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.344 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.287 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.171 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.103 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 48.150 μs (5%) 39.05 KiB (1%) 905
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 33.062 μs (5%) 33.83 KiB (1%) 796
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.846 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.630 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 16.541 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 16.571 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 21.460 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.129 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 289.080 μs (5%) 293.61 KiB (1%) 6804
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 262.901 μs (5%) 288.39 KiB (1%) 6695
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 55.293 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 56.435 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.152 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.128 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.751 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.705 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.844 μs (5%) 36.33 KiB (1%) 899
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.176 μs (5%) 31.11 KiB (1%) 790
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.752 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.597 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.542 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.211 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.206 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.598 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 136.355 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.734 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.336 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.393 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.693 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.661 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.877 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.824 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 22.171 μs (5%) 12.91 KiB (1%) 283
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.453 μs (5%) 7.69 KiB (1%) 174
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.345 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.046 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 6.973 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 6.973 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 8.032 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.935 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.331 μs (5%) 49.23 KiB (1%) 1020
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.566 μs (5%) 44.02 KiB (1%) 911
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.240 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.025 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.445 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.135 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.834 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.368 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 79.979 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 62.437 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.808 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.611 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.523 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.011 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.163 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.685 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 28.132 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.085 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.323 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.046 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 445.626 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 413.170 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 574.658 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 526.220 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 23.985 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.689 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.939 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.686 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.842 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.692 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.682 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.497 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 38.402 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.224 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.320 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.064 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3243 MHz       6423 s          0 s        736 s      23299 s          0 s
       #2  2445 MHz       6934 s          0 s        794 s      22709 s          0 s
       #3  3243 MHz       7040 s          2 s        732 s      22677 s          0 s
       #4  2797 MHz       7052 s          0 s        782 s      22628 s          0 s
  Memory: 15.615272521972656 GB (12650.6953125 MB free)
  Uptime: 3051.95 sec
  Load Avg:  1.06  1.03  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               4
On-line CPU(s) list:                  0-3
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7763 64-Core Processor
CPU family:                           25
Model:                                1
Thread(s) per core:                   2
Core(s) per socket:                   2
Socket(s):                            1
Stepping:                             1
BogoMIPS:                             4890.84
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves user_shstk clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                       AMD-V
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            64 KiB (2 instances)
L1i cache:                            64 KiB (2 instances)
L2 cache:                             1 MiB (2 instances)
L3 cache:                             32 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-3
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@SamuelBrand1
Copy link
Collaborator Author

ID | time ratio | memory ratio
-- | -- | --
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] | 1.13 (5%) ❌ | 1.06 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] | 1.13 (5%) ❌ | 1.06 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] | 1.09 (5%) ❌ | 1.12 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] | 1.10 (5%) ❌ | 1.12 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] | 0.43 (5%) ✅ | 0.79 (1%) ✅
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] | 0.43 (5%) ✅ | 0.79 (1%) ✅
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] | 1.19 (5%) ❌ | 0.35 (1%) ✅
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] | 1.18 (5%) ❌ | 0.35 (1%) ✅

Seems the relevant bit of the benchmarking? I think thats overall bad? But very big performance gain with not compiled tape AD?

@seabbs
Copy link
Collaborator

seabbs commented Oct 4, 2024

Yes agree. I think ideally we would look at:

  1. xexpy in isolation
  2. Doing cumsum(preprend etc in isolation)

Copy link
Contributor

github-actions bot commented Oct 4, 2024

Benchmark result

Judge result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmarks:
    • Target: 4 Oct 2024 - 11:19
    • Baseline: 4 Oct 2024 - 11:44
  • Package commits:
    • Target: e2bc9b
    • Baseline: 21fb99
  • Julia commits:
    • Target: 6f3fdf
    • Baseline: 6f3fdf
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.47 (5%) ✅ 0.66 (1%) ✅
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.46 (5%) ✅ 0.66 (1%) ✅
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.16 (5%) ❌ 1.41 (1%) ❌
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.19 (5%) ❌ 1.41 (1%) ❌
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.08 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.36 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.11 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.91 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 0.85 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.92 (5%) ✅ 1.00 (1%)
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.07 (5%) ❌ 1.00 (1%)
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 0.92 (5%) ✅ 1.00 (1%)
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.93 (5%) ✅ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Target

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3221 MHz       3800 s          0 s        425 s      12720 s          0 s
       #2  3243 MHz       3030 s          0 s        336 s      13594 s          0 s
       #3  2577 MHz       3233 s          0 s        428 s      13294 s          0 s
       #4  3230 MHz       4038 s          0 s        398 s      12523 s          0 s
  Memory: 15.61526870727539 GB (12901.1328125 MB free)
  Uptime: 1700.67 sec
  Load Avg:  1.04  1.03  0.89
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3244 MHz       6901 s          0 s        788 s      24135 s          0 s
       #2  3299 MHz       6640 s          0 s        695 s      24505 s          0 s
       #3  2854 MHz       6315 s          0 s        736 s      24786 s          0 s
       #4  2445 MHz       8178 s          0 s        855 s      22811 s          0 s
  Memory: 15.61526870727539 GB (12430.12109375 MB free)
  Uptime: 3190.81 sec
  Load Avg:  1.0  1.0  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 4 Oct 2024 - 11:19
  • Package commit: e2bc9b
  • Julia commit: 6f3fdf
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 2.059 μs (5%) 416 bytes (1%) 5
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 293.179 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 299.477 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 451.753 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 439.769 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.487 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.628 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 554.947 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 554.781 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 210.993 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 211.552 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 311.860 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 311.879 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.407 μs (5%) 3.75 KiB (1%) 84
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.350 μs (5%) 3.75 KiB (1%) 84
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 639.433 ns (5%) 384 bytes (1%) 11
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 641.745 ns (5%) 384 bytes (1%) 11
["EpiLatentModels", "AR", "evaluation", "linked"] 1.931 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.590 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.509 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.956 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 103.894 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 68.718 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.453 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.719 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.514 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.291 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.068 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.688 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.222 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.523 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.969 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.748 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 61.174 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 55.715 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 124.122 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 117.961 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 189.223 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 141.996 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.623 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.211 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.160 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 8.856 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 12.814 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.079 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 71.794 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 53.009 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.175 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.929 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.975 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.363 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.126 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.630 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 58.228 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.557 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.703 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.657 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 433.477 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 362.152 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.410 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 869.600 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 40.907 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.249 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.236 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.051 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 255.612 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 254.623 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 345.784 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 344.654 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.142 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.103 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 456.284 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 454.503 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.788 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.613 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.813 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.232 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.643 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.693 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.231 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.048 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 908.979 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 790.225 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.734 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.642 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.913 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.826 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.594 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.357 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 602.560 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 484.549 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 795.090 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 668.994 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 40.596 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.470 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.145 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 957.370 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 310.502 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 310.008 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 402.505 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 402.443 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.445 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.332 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 529.779 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 527.058 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.110 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.634 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.895 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.458 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 56.245 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.647 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.053 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.926 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.165 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.619 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.916 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.447 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 83.176 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.948 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.347 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.649 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.237 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.212 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.226 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.125 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 49.082 μs (5%) 39.05 KiB (1%) 905
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 33.713 μs (5%) 33.83 KiB (1%) 796
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.041 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.679 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 16.341 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 16.291 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 22.061 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.300 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 288.129 μs (5%) 293.61 KiB (1%) 6804
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 264.004 μs (5%) 288.39 KiB (1%) 6695
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 53.700 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 52.849 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.146 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.128 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.781 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.702 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.874 μs (5%) 36.33 KiB (1%) 899
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.878 μs (5%) 31.11 KiB (1%) 790
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.798 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.606 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.560 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.226 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.148 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.540 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 138.730 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.755 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.552 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.277 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.657 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.610 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.849 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.798 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 22.422 μs (5%) 12.91 KiB (1%) 283
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.639 μs (5%) 7.69 KiB (1%) 174
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.353 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.038 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 6.917 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 6.897 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.988 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.862 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.642 μs (5%) 49.23 KiB (1%) 1020
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.676 μs (5%) 44.02 KiB (1%) 911
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.574 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.166 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.473 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.126 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.630 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.315 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 82.113 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 62.658 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.864 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.540 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.553 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.018 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.196 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.647 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 28.413 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 12.974 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.262 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.014 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 447.960 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 413.075 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 572.652 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 530.785 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 24.185 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.840 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.985 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.676 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.834 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.700 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.662 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.512 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 38.131 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.023 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.260 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.042 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3221 MHz       3800 s          0 s        425 s      12720 s          0 s
       #2  3243 MHz       3030 s          0 s        336 s      13594 s          0 s
       #3  2577 MHz       3233 s          0 s        428 s      13294 s          0 s
       #4  3230 MHz       4038 s          0 s        398 s      12523 s          0 s
  Memory: 15.61526870727539 GB (12901.1328125 MB free)
  Uptime: 1700.67 sec
  Load Avg:  1.04  1.03  0.89
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 4 Oct 2024 - 11:44
  • Package commit: 21fb99
  • Julia commit: 6f3fdf
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 2.049 μs (5%) 416 bytes (1%) 5
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 299.836 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 306.019 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 442.889 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 445.402 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.327 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.437 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 541.757 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 543.569 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 213.260 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 211.013 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 309.798 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 311.294 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.417 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.418 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 549.048 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 541.011 ns (5%) 272 bytes (1%) 6
["EpiLatentModels", "AR", "evaluation", "linked"] 2.028 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.593 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.468 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.951 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 107.432 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 69.921 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.292 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.000 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.530 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.272 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.190 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.721 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.909 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.504 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.002 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.710 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 60.585 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 56.787 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 126.720 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 119.075 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 194.227 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 148.821 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.994 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.461 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.602 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 8.887 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 12.233 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.259 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 76.093 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 54.262 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.193 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.998 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.820 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.343 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.108 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.728 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 60.925 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 42.690 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.647 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.530 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 426.131 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 361.846 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.035 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 895.000 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 42.870 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.861 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.220 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.053 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 249.016 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 248.949 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 347.349 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 346.625 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.245 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.261 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 449.485 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 443.005 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.834 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.672 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.540 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.318 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.578 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.636 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.232 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.044 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 910.762 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 770.496 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.901 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.765 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 47.530 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.649 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.548 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.374 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 584.414 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 473.228 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 800.297 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 682.363 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 42.730 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.801 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.129 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 965.143 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 305.972 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 307.633 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 416.080 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 413.630 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.562 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.554 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 531.368 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 517.589 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.486 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.651 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.892 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.504 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 61.226 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.057 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.212 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.857 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.231 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.675 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.976 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.397 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 84.149 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 47.590 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.475 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.760 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.369 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.336 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.407 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.245 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 50.636 μs (5%) 39.05 KiB (1%) 905
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 34.255 μs (5%) 33.83 KiB (1%) 796
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.941 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.654 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 16.271 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 16.220 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 21.450 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.211 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 294.586 μs (5%) 293.61 KiB (1%) 6804
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 274.240 μs (5%) 288.39 KiB (1%) 6695
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 50.416 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 50.676 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.157 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.136 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.831 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.700 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.509 μs (5%) 36.33 KiB (1%) 899
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 31.340 μs (5%) 31.11 KiB (1%) 790
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.804 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.619 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.557 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.210 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.275 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.571 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 140.793 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 24.386 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.292 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.271 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.689 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.658 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.885 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.844 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 23.574 μs (5%) 12.91 KiB (1%) 283
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.750 μs (5%) 7.69 KiB (1%) 174
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.339 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.091 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 6.990 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 6.898 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 8.062 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.975 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.391 μs (5%) 49.23 KiB (1%) 1020
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.997 μs (5%) 44.02 KiB (1%) 911
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.348 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.160 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.536 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.491 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 6.023 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.701 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 82.437 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 62.880 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.833 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.619 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.535 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.017 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.296 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.632 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 29.295 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.555 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.294 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.033 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 454.283 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 419.528 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 583.328 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 531.361 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 24.476 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.900 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.919 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.670 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.809 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.681 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.741 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.571 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 38.853 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.254 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.248 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.051 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.8.0-1014-azure #16~22.04.1-Ubuntu SMP Thu Aug 15 21:31:41 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3244 MHz       6901 s          0 s        788 s      24135 s          0 s
       #2  3299 MHz       6640 s          0 s        695 s      24505 s          0 s
       #3  2854 MHz       6315 s          0 s        736 s      24786 s          0 s
       #4  2445 MHz       8178 s          0 s        855 s      22811 s          0 s
  Memory: 15.61526870727539 GB (12430.12109375 MB free)
  Uptime: 3190.81 sec
  Load Avg:  1.0  1.0  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               4
On-line CPU(s) list:                  0-3
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7763 64-Core Processor
CPU family:                           25
Model:                                1
Thread(s) per core:                   2
Core(s) per socket:                   2
Socket(s):                            1
Stepping:                             1
BogoMIPS:                             4890.86
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves user_shstk clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                       AMD-V
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            64 KiB (2 instances)
L1i cache:                            64 KiB (2 instances)
L2 cache:                             1 MiB (2 instances)
L3 cache:                             32 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-3
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@SamuelBrand1
Copy link
Collaborator Author

Yes agree. I think ideally we would look at:

  1. xexpy in isolation
  2. Doing cumsum(preprend etc in isolation)

Good thinking and I've noted #472

@seabbs
Copy link
Collaborator

seabbs commented Oct 4, 2024

So the expy change appears to have little impact on current benchmarks for forward diff. Making things significantly faster on reverse diff but hurt when using compiled reverse diff.

So quite a mixed bag. I don't have a strong mental model to explain that result

@SamuelBrand1
Copy link
Collaborator Author

So the expy change appears to have little impact on current benchmarks for forward diff. Making things significantly faster on reverse diff but hurt when using compiled reverse diff.

So quite a mixed bag. I don't have a strong mental model to explain that result

Me neither.

@seabbs seabbs closed this Oct 4, 2024
@seabbs seabbs deleted the 469-change-calculation-method-in-epiawarebasegenerate_latent_infsepi_modelexpgrowthrate-rt branch October 4, 2024 14:45
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Change calculation method in EpiAwareBase.generate_latent_infs(epi_model::ExpGrowthRate, rt)
3 participants