AI-powered batch processing for microscopy images
Transform, analyze, and quantify microscopy data at scale with deep learning - from file conversion to segmentation, tracking, and analysis.
🤖 5 AI Methods Built-In
- Virtual staining (VisCy) • Denoising (CAREamics) • Spot detection (Spotiflow) • Segmentation (Cellpose) • Tracking (Trackastra)
- Auto-install in isolated environments • No dependency conflicts • GPU acceleration
🔄 Universal File Conversion
- Convert LIF, ND2, CZI, NDPI, Acquifer → TIFF or OME-Zarr
- Preserve spatial metadata automatically
⚡ Batch Processing
- Process entire folders with one click • 40+ processing functions • Progress tracking & quality control
📊 Complete Analysis Pipeline
- Segmentation → Tracking → Quantification → Colocalization
# Install napari and the plugin
mamba create -y -n napari-tmidas -c conda-forge python=3.11
mamba activate napari-tmidas
pip install "napari[all]"
pip install napari-tmidas
# Launch napari
napariThen find napari-tmidas in the Plugins menu. Watch video tutorials →
💡 Tip: AI methods auto-install their dependencies on first use - no manual setup required!
| Method | Description | Documentation |
|---|---|---|
| 🎨 VisCy | Virtual staining from phase/DIC | Guide |
| 🔧 CAREamics | Noise2Void/CARE denoising | Guide |
| 🎯 Spotiflow | Spot/puncta detection | Guide |
| 🔬 Cellpose | Cell/nucleus segmentation | Guide |
| 📈 Trackastra | Cell tracking over time | Guide |
- File Conversion - Multi-format microscopy file conversion (LIF, ND2, CZI, NDPI, Acquifer)
- Batch Processing - Label operations, filters, channel splitting
- Quality Control - Visual QC with grid overlay
- Quantification - Extract measurements from labels
- Colocalization - Multi-channel ROI analysis
- Batch Crop Anything - Interactive object cropping with SAM2
- Batch Label Inspection - Manual label verification and editing
- SciPy Filters - Gaussian, median, morphological operations
- Scikit-Image Filters - CLAHE, thresholding, edge detection
mamba create -y -n napari-tmidas -c conda-forge python=3.11
mamba activate napari-tmidas
python -m pip install "napari[all]"| Your Needs | Command |
|---|---|
| Just process & convert images | pip install napari-tmidas |
| Need AI features (SAM2, Cellpose, Spotiflow, etc.) | pip install 'napari-tmidas[deep-learning]' |
| Want the latest dev features | pip install git+https://github.com/MercaderLabAnatomy/napari-tmidas.git |
Recommended for most users: pip install 'napari-tmidas[deep-learning]'
Contributions are welcome! Please ensure tests pass before submitting PRs:
pip install tox
toxBSD-3 License - see LICENSE for details.
Found a bug or have a feature request? Open an issue
Built with napari and powered by:



